import torch from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from custom_resnet import * #from resnet import ResNet18 # Assuming you have a custom ResNet18 implementation def load_custom_state_dict(model, state_dict): model_state_dict = model.state_dict() # Filter out unexpected keys filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict} # Update the model's state_dict model_state_dict.update(filtered_state_dict) # Load the updated state_dict to the model model.load_state_dict(model_state_dict) model = CustomResNet() # Replace this with your CustomResNet if necessary # Load the state_dict using the custom function state_dict = torch.load("model_pth.ckpt", map_location=torch.device('cpu')) load_custom_state_dict(model, state_dict['state_dict']) inv_normalize = transforms.Normalize( mean=[-0.494 / 0.2470, -0.4822 / 0.2435, -0.4465 / 0.2616], std=[1 / 0.2470, 1 / 0.2435, 1 / 0.2616] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def inference(input_img, transparency=0.5, target_layer_number=-1, num_images=1, num_top_classes=3): transform = transforms.ToTensor() org_img = input_img input_img = transform(input_img) input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=1) probabilities = softmax(outputs) confidences = {classes[i]: float(probabilities[0, i]) for i in range(10)} _, prediction = torch.max(outputs, 1) # Get GradCAM for the specified target_layer_number target_layers = [model.layer_2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() # Convert org_img (PIL image) to a NumPy array before performing arithmetic operations visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) # Create a list to store multiple visualizations # # Generate multiple GradCAM visualizations if num_images > 1 # for _ in range(num_images - 1): # # Get GradCAM for different target_layer_number if provided by the user # if target_layer_number >= -1: # target_layers = [model.layer_2[target_layer_number]] # cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) # grayscale_cam = cam(input_tensor=input_img, targets=None) # grayscale_cam = grayscale_cam[0, :] # visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) # visualizations.append(visualization) # Get top classes based on user input (up to a maximum of 10) top_classes = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:min(num_top_classes, 10)]} return top_classes, visualization title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [["/content/examples/car_1.jpg",0.5,-1],["/content/examples/car_2.jpg",0.5,-1],["/content/examples/cat_1.jpg",0.5,-1],["/content/examples/cat_2.jpg",0.5,-1],["/content/examples/dog_1.jpg",0.5,-1],["/content/examples/dog_2.jpg",0.5,-1],["/content/examples/frog_1.jpg",0.5,-1],["/content/examples/frog_2.jpg",0.5,-1],["/content/examples/horse_1.jpg",0.5,-1],["/content/examples/horse_2.jpg",0.5,-1]] demo = gr.Interface( inference, inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"), gr.Number(default=1, label="Number of GradCAM Images to Show"), gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes to Show")], outputs = [gr.Label(num_top_classes=5), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)], title = title, description = description, examples = examples, ) demo.launch()