import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image import torch from torchvision import datasets, transforms #from model import CustomResNet import random model = CustomResNet() model.load_state_dict(torch.load('CustomResNet.pth', map_location=torch.device('cpu')), strict=False) model.eval() classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def inference(input_img, input_slider_grad_or_not, transparency = 0.5, target_layer_number = 3, topk = 3): mean=[0.49139968, 0.48215827, 0.44653124] std=[0.24703233, 0.24348505, 0.26158768] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean, std) ]) orginal_img = input_img input_img = transform(input_img) input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} if input_slider_grad_or_not == "No": return confidences, orginal_img _, prediction = torch.max(outputs, 1) target_layers = [model.layer_3[-1]] if target_layer_number == 1: target_layers = [model.layer_1[-1]] if target_layer_number == 2: target_layers = [model.layer_2[-1]] if target_layer_number == 3: target_layers = [model.layer_3[-1]] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(orginal_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) return confidences, visualization def show_gradcam_images(n, a, b): images = [ ('examples/car.jpg', 'car'), ('examples/cat.jpg', 'cat'), ('examples/dog.jpg', 'dog'), ('examples/horse.jpg', 'horse'), ('examples/ship.jpg', 'ship'), ('examples/bird.jpg', 'bird'), ('examples/frog.jpg', 'frog'), ('examples/plane.jpg', 'plane'), ('examples/truck.jpg', 'truck'), ('examples/deer.jpg', 'deer'), ] images_with_gradcam = [] for image_path, label in images: image = Image.open(image_path) image_array = np.asarray(image) visualization = inference(image_array, "Yes", a, b)[-1] images_with_gradcam.append((visualization, label)) return { grad1_block: gr.update(visible=True), gallery3: images_with_gradcam[:n] } def change_grad_view(choice): if choice == "Yes": return grad_block.update(visible=True) else: return grad_block.update(visible=False) def show_misclassified_images(n, grad_cam, a, b): images = [ ('misclassified_images/misclassified_0_GT_bird_Pred_cat.jpg', 'bird/cat'), ('misclassfied_images/misclassified_1_GT_car_Pred_truck.jpg', 'car/truck'), ('misclassified_images/misclassified_2_GT_plane_Pred_truck.jpg', 'plane/truck'), ('misclassified_images/misclassified_3_GT_deer_Pred_dog.jpg', 'deer/dog'), ('misclassified_images/misclassified_4_GT_frog_Pred_cat.jpg', 'frog/cat'), ('misclassified_images/misclassified_5_GT_cat_Pred_dog.jpg', 'cat/dog'), ('misclassified_images/misclassified_6_GT_cat_Pred_dog.jpg', 'cat/dog'), ('misclassified_images/misclassified_7_GT_dog_Pred_horse.jpg', 'dog/horse'), ('misclassified_images/misclassified_8_GT_bird_Pred_dog.jpg', 'bird/dog'), ('misclassified_images/misclassified_9_GT_ship_Pred_plane.jpg', 'ship/plane') ] images_with_gradcam = [] for image_path, label in images: image = Image.open(image_path) image_array = np.asarray(image) visualization = inference(image_array, "Yes", a, b)[-1] images_with_gradcam.append((visualization, label)) if grad_cam == "Yes": return { miscls1_block: gr.update(visible=True), gallery: images_with_gradcam[:n] } return { miscls1_block: gr.update(visible=True), gallery: images[:n] } def change_miscls_view(choice): if choice == "Yes": return miscls_block.update(visible=True) else: return miscls_block.update(visible=False) def change_textbox(choice): if choice == "Yes": return [gr.Slider.update(visible=True), gr.Slider.update(visible=True)] else: return [gr.Slider.update(visible=False), gr.Slider.update(visible=False)] def update_num_top_classes(input_img, input_slider_grad_or_not, transparency, target_layer_number, topk): output_classes.num_top_classes=topk return inference(input_img, input_slider_grad_or_not, transparency, target_layer_number, topk)[0] def change_mygrad_view(choice): if choice == "Yes": return grad_or_not.update(visible=True) else: return grad_or_not.update(visible=False) with gr.Blocks(theme='abidlabs/dracula_revamped') as demo: gr.Markdown(""" # CustomResNet with GradCAM - Interactive Interface ### A simple Gradio interface to infer on CustomResNet model and get GradCAM results """) gr.Markdown("# Analyse the Model") gr.Markdown("## Grad-CAM") with gr.Row(): grad_yes_no = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to see GradCAM images") with gr.Row(visible=False) as grad_block: with gr.Column(scale=1): input_grad = gr.Slider(1, 10, value = 3, step=1, label="Number of GradCAM images to view") input_overlay = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to configure gradcam") with gr.Row(): clear_btn3 = gr.ClearButton() submit_btn3 = gr.Button("Submit") with gr.Column(scale=1): input_slider31 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM", interactive=True, visible=False) input_slider32 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?", interactive=True, visible=False) with gr.Row(visible=False) as grad1_block: gallery3 = gr.Gallery( label="GradCAM images", show_label=True, elem_id="gallery3" ).style(columns=[4], rows=[3], object_fit="contain", height="auto") submit_btn3.click(fn=show_gradcam_images, inputs=[input_grad, input_slider31, input_slider32], outputs = [grad1_block, gallery3]) clear_btn3.click(lambda: [None, None, None, None, None], outputs=[input_grad, input_grad, input_slider31, input_slider32, gallery3]) input_overlay.change(fn=change_textbox, inputs=input_overlay, outputs=[input_slider31, input_slider32]) grad_yes_no.change(fn=change_grad_view, inputs=grad_yes_no, outputs=[grad_block]) ############################################### gr.Markdown("## Misclassification") with gr.Row(): miscls_yes_no = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to see misclassified images") with gr.Row(visible=False) as miscls_block: with gr.Column(scale=1): input_miscn = gr.Slider(1, 10, value = 3, step=1, label="Number of misclassified images to view") with gr.Row(): clear_btn2 = gr.ClearButton() submit_btn2 = gr.Button("Submit") with gr.Column(scale=1): input_grad2 = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to overlay gradcam") input_slider21 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM", interactive=True, visible=False) input_slider22 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?", interactive=True, visible=False) with gr.Column(visible=False) as miscls1_block: gallery = gr.Gallery( label="Misclassified images", show_label=True, elem_id="gallery" ).style(columns=[4], rows=[3], object_fit="contain", height="auto") submit_btn2.click(fn=show_misclassified_images, inputs=[input_miscn, input_grad2, input_slider21, input_slider22], outputs = [miscls1_block, gallery]) clear_btn2.click(lambda: [None, None, None, None, None], outputs=[input_miscn, input_grad, input_slider21, input_slider22, gallery]) input_grad2.change(fn=change_textbox, inputs=input_grad2, outputs=[input_slider21, input_slider22]) miscls_yes_no.change(fn=change_miscls_view, inputs=miscls_yes_no, outputs=[miscls_block]) ############################################### gr.Markdown("## Try it Out") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(shape=(32, 32), label="Input Image") input_topk = gr.Slider(1, 10, value = 3, step=1, label="Top N Classes") input_slider_grad_or_not = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to overlay GradCAM output") with gr.Column(visible=False) as grad_or_not: input_slider1 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM") input_slider2 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?") with gr.Row(): clear_btn = gr.ClearButton() submit_btn = gr.Button("Submit") with gr.Column(scale=1): output_classes = gr.Label(num_top_classes=3) output_image = gr.Image(shape=(32, 32), label="Output").style(width=128, height=128) gr.Markdown("## Examples") gr.Examples( examples=[["examples/car.jpg", "Yes", 0.5, 3, 3], ["examples/cat.jpg", "Yes", 0.7, 2, 5], ["examples/dog.jpg", "Yes", 0.9, 1, 4], ["examples/truck.jpg", "Yes", 0.3, 1, 7], ["examples/horse.jpg", "Yes", 0.7, 3, 4], ["examples/frog.jpg", "Yes", 0.8, 3, 6], ["examples/bird.jpg", "Yes", 0.9, 1, 7], ["examples/deer.jpg", "Yes", 0.3, 1, 3], ["examples/plane.jpg", "Yes", 0.4, 3, 4], ["examples/ship.jpg", "Yes", 0.5, 2, 5] ], inputs=[input_image,input_slider_grad_or_not,input_slider1,input_slider2, input_topk], outputs=[output_classes,output_image], fn=inference, cache_examples=True, ) submit_btn.click(fn=inference, inputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, input_topk], outputs=[output_classes, output_image]) clear_btn.click(lambda: [None, "No", 0.5, 3, None, None, 3], outputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, output_classes, output_image]) input_topk.change(update_num_top_classes, inputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, input_topk], outputs=[output_classes]) input_slider_grad_or_not.change(fn=change_mygrad_view, inputs=input_slider_grad_or_not, outputs=[grad_or_not]) if __name__ == "__main__": demo.launch(debug=True)