File size: 802 Bytes
62a1d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Cnn(nn.Module):
    def __init__(self, dropout=0.5):
        super(Cnn, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv2_drop = nn.Dropout2d(p=dropout)
        self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
        self.fc2 = nn.Linear(100, 10)
        self.fc1_drop = nn.Dropout(p=dropout)

    def forward(self, x):
        x = torch.relu(F.max_pool2d(self.conv1(x), 2))
        x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        # flatten over channel, height and width = 1600
        x = x.view(-1, x.size(1) * x.size(2) * x.size(3))

        x = torch.relu(self.fc1_drop(self.fc1(x)))
        x = torch.softmax(self.fc2(x), dim=-1)
        return x