Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.datasets import fetch_openml
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from skorch import NeuralNetClassifier
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
mnist = fetch_openml('mnist_784', as_frame=False, cache=False)
|
10 |
+
X = mnist.data.astype('float32')
|
11 |
+
y = mnist.target.astype('int64')
|
12 |
+
X /= 255.0
|
13 |
+
|
14 |
+
|
15 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
XCnn = X.reshape(-1, 1, 28, 28)
|
17 |
+
XCnn_train, XCnn_test, y_train, y_test = train_test_split(XCnn, y, test_size=0.25, random_state=42)
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
import torchvision.transforms as transforms
|
21 |
+
class Cnn(nn.Module):
|
22 |
+
def __init__(self, dropout=0.5):
|
23 |
+
super(Cnn, self).__init__()
|
24 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
|
25 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
|
26 |
+
self.conv2_drop = nn.Dropout2d(p=dropout)
|
27 |
+
self.fc1 = nn.Linear(1600, 100) # 1600 = number channels * width * height
|
28 |
+
self.fc2 = nn.Linear(100, 10)
|
29 |
+
self.fc1_drop = nn.Dropout(p=dropout)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = torch.relu(F.max_pool2d(self.conv1(x), 2))
|
33 |
+
x = torch.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
34 |
+
|
35 |
+
# flatten over channel, height and width = 1600
|
36 |
+
x = x.view(-1, x.size(1) * x.size(2) * x.size(3))
|
37 |
+
|
38 |
+
x = torch.relu(self.fc1_drop(self.fc1(x)))
|
39 |
+
x = torch.softmax(self.fc2(x), dim=-1)
|
40 |
+
return x
|
41 |
+
torch.manual_seed(0)
|
42 |
+
|
43 |
+
cnn = NeuralNetClassifier(
|
44 |
+
Cnn,
|
45 |
+
max_epochs=10,
|
46 |
+
lr=0.002,
|
47 |
+
optimizer=torch.optim.Adam,
|
48 |
+
device=device,
|
49 |
+
)
|
50 |
+
cnn.fit(XCnn_train, y_train)
|
51 |
+
# Specify the path to save the model weights
|
52 |
+
# After training, save the model weights
|
53 |
+
import torch
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# After training, save the model weights
|
58 |
+
model_weights_path = 'model_weights.pth'
|
59 |
+
|
60 |
+
torch.save(cnn.module_.state_dict(), model_weights_path)
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 35, 32)
|
65 |
+
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
|
66 |
+
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
|
67 |
+
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
|
68 |
+
drawing_mode = st.sidebar.selectbox(
|
69 |
+
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform", "polygon")
|
70 |
+
)
|
71 |
+
realtime_update = st.sidebar.checkbox("Update in realtime", True)
|
72 |
+
|
73 |
+
# Create a canvas component
|
74 |
+
canvas_result = st_canvas(
|
75 |
+
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
|
76 |
+
stroke_width=stroke_width,
|
77 |
+
stroke_color=stroke_color,
|
78 |
+
background_color=bg_color,
|
79 |
+
background_image=Image.open(bg_image) if bg_image else None,
|
80 |
+
update_streamlit=realtime_update,
|
81 |
+
height=300,
|
82 |
+
drawing_mode=drawing_mode,
|
83 |
+
display_toolbar=st.sidebar.checkbox("Display toolbar", True),
|
84 |
+
key="full_app",
|
85 |
+
)
|
86 |
+
|
87 |
+
# Do something interesting with the image data and paths
|
88 |
+
if canvas_result.image_data is not None:
|
89 |
+
#st.image(canvas_result.image_data)
|
90 |
+
image = canvas_result.image_data
|
91 |
+
image1 = image.copy()
|
92 |
+
image1 = image1.astype('uint8')
|
93 |
+
image1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
|
94 |
+
image1 = cv2.resize(image1,(28,28))
|
95 |
+
st.image(image1)
|
96 |
+
|
97 |
+
image1.resize(1,28,28,1)
|
98 |
+
st.title(np.argmax(cnn.predict(image1)))
|
99 |
+
if canvas_result.json_data is not None:
|
100 |
+
st.dataframe(pd.json_normalize(canvas_result.json_data["objects"]))
|