File size: 5,446 Bytes
a1b524b
 
 
 
5ed3dd9
 
a1b524b
 
 
 
 
 
 
 
 
 
 
dda8135
 
 
 
 
5ed3dd9
 
 
dda8135
5ed3dd9
a1b524b
 
 
 
dda8135
 
5ed3dd9
 
a1b524b
 
 
 
 
 
26fa884
dda8135
a1b524b
 
 
 
 
 
 
 
dda8135
 
a1b524b
 
 
dda8135
 
 
 
 
a1b524b
 
 
 
 
 
 
dda8135
 
 
 
 
 
 
 
 
a1b524b
 
 
 
 
 
 
 
dda8135
 
 
 
 
 
 
 
a1b524b
 
26fa884
 
a1b524b
 
 
 
 
 
 
 
 
 
 
dda8135
a1b524b
dda8135
a1b524b
 
 
 
 
dda8135
 
 
a1b524b
 
 
 
dda8135
a1b524b
 
 
 
dda8135
a1b524b
 
 
dda8135
a1b524b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import annotations

import argparse
import os
import pathlib
import subprocess
import sys
from typing import Callable, Union

import dlib
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T

if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available():
    with open("patch.e4e") as f:
        subprocess.run("patch -p1".split(), cwd="encoder4editing", stdin=f)
    with open("patch.hairclip") as f:
        subprocess.run("patch -p1".split(), cwd="HairCLIP", stdin=f)

app_dir = pathlib.Path(__file__).parent

e4e_dir = app_dir / "encoder4editing"
sys.path.insert(0, e4e_dir.as_posix())

from models.psp import pSp
from utils.alignment import align_face

hairclip_dir = app_dir / "HairCLIP"
mapper_dir = hairclip_dir / "mapper"
sys.path.insert(0, hairclip_dir.as_posix())
sys.path.insert(0, mapper_dir.as_posix())

from mapper.datasets.latents_dataset_inference import LatentsDatasetInference
from mapper.hairclip_mapper import HairCLIPMapper


class Model:
    def __init__(self):
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.landmark_model = self._create_dlib_landmark_model()
        self.e4e = self._load_e4e()
        self.hairclip = self._load_hairclip()
        self.transform = self._create_transform()

    @staticmethod
    def _create_dlib_landmark_model():
        path = huggingface_hub.hf_hub_download(
            "public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat"
        )
        return dlib.shape_predictor(path)

    def _load_e4e(self) -> nn.Module:
        ckpt_path = huggingface_hub.hf_hub_download("public-data/e4e", "e4e_ffhq_encode.pt")
        ckpt = torch.load(ckpt_path, map_location="cpu")
        opts = ckpt["opts"]
        opts["device"] = self.device.type
        opts["checkpoint_path"] = ckpt_path
        opts = argparse.Namespace(**opts)
        model = pSp(opts)
        model.to(self.device)
        model.eval()
        return model

    def _load_hairclip(self) -> nn.Module:
        ckpt_path = huggingface_hub.hf_hub_download("public-data/HairCLIP", "hairclip.pt")
        ckpt = torch.load(ckpt_path, map_location="cpu")
        opts = ckpt["opts"]
        opts["device"] = self.device.type
        opts["checkpoint_path"] = ckpt_path
        opts["editing_type"] = "both"
        opts["input_type"] = "text"
        opts["hairstyle_description"] = "HairCLIP/mapper/hairstyle_list.txt"
        opts["color_description"] = "red"
        opts = argparse.Namespace(**opts)
        model = HairCLIPMapper(opts)
        model.to(self.device)
        model.eval()
        return model

    @staticmethod
    def _create_transform() -> Callable:
        transform = T.Compose(
            [
                T.Resize(256),
                T.CenterCrop(256),
                T.ToTensor(),
                T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
            ]
        )
        return transform

    def detect_and_align_face(self, image: str) -> PIL.Image.Image:
        image = align_face(filepath=image, predictor=self.landmark_model)
        return image

    @staticmethod
    def denormalize(tensor: torch.Tensor) -> torch.Tensor:
        return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)

    def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
        tensor = self.denormalize(tensor)
        return tensor.cpu().numpy().transpose(1, 2, 0)

    @torch.inference_mode()
    def reconstruct_face(self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]:
        input_data = self.transform(image).unsqueeze(0).to(self.device)
        reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True)
        reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1)
        reconstructed = self.postprocess(reconstructed)
        return reconstructed, latents[0]

    @torch.inference_mode()
    def generate(
        self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor
    ) -> np.ndarray:
        opts = self.hairclip.opts
        opts.editing_type = editing_type
        opts.color_description = color_description

        if editing_type == "color":
            hairstyle_index = 0

        device = torch.device(opts.device)

        dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts)
        w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3]

        w = w.unsqueeze(0).to(device)
        hairstyle_text_inputs = hairstyle_text_inputs_list[hairstyle_index].unsqueeze(0).to(device)
        color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device)

        hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)
        color_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)

        w_hat = w + 0.1 * self.hairclip.mapper(
            w,
            hairstyle_text_inputs,
            color_text_inputs,
            hairstyle_tensor_hairmasked,
            color_tensor_hairmasked,
        )
        x_hat, _ = self.hairclip.decoder(
            [w_hat],
            input_is_latent=True,
            return_latents=True,
            randomize_noise=False,
            truncation=1,
        )
        res = torch.clamp(x_hat[0].detach(), -1, 1)
        res = self.postprocess(res)
        return res