Spaces:
Runtime error
Runtime error
File size: 3,393 Bytes
69f28bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
title = 'Object Detection App with DETR and YOLOS'
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
"""
models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small']
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url,image_upload,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
if 'detr' in model_name:
model = DetrForObjectDetection.from_pretrained(model_name)
elif 'yolos' in model_name:
model = YolosForObjectDetection.from_pretrained(model_name)
if validators.url(url):
image = Image.open(requests.get(url, stream=True).raw)
elif image_upload:
image = image_upload
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
gr.Interface(
fn = detect_objects,
inputs = [options,
gr.Textbox(lines=1,label='Enter valid image URL here..'),
gr.Image(type='pil'),
gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')],
outputs=gr.Image(shape=(400,400)),
title = title,
description=description
).launch() |