Spaces:
Build error
Build error
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +3 -3
- app.py +62 -0
- configs/_base_/datasets/cityscapes_detection.py +55 -0
- configs/_base_/datasets/cityscapes_instance.py +55 -0
- configs/_base_/datasets/coco_detection.py +48 -0
- configs/_base_/datasets/coco_instance.py +48 -0
- configs/_base_/datasets/coco_instance_semantic.py +53 -0
- configs/_base_/datasets/deepfashion.py +53 -0
- configs/_base_/datasets/lvis_v0.5_instance.py +23 -0
- configs/_base_/datasets/lvis_v1_instance.py +23 -0
- configs/_base_/datasets/voc0712.py +55 -0
- configs/_base_/datasets/wider_face.py +63 -0
- configs/_base_/default_runtime.py +16 -0
- configs/_base_/models/cascade_mask_rcnn_r50_fpn.py +196 -0
- configs/_base_/models/cascade_mask_rcnn_swin_fpn.py +207 -0
- configs/_base_/models/cascade_mask_rcnn_uniformer_fpn.py +201 -0
- configs/_base_/models/cascade_rcnn_r50_fpn.py +179 -0
- configs/_base_/models/fast_rcnn_r50_fpn.py +62 -0
- configs/_base_/models/faster_rcnn_r50_caffe_c4.py +112 -0
- configs/_base_/models/faster_rcnn_r50_caffe_dc5.py +103 -0
- configs/_base_/models/faster_rcnn_r50_fpn.py +107 -0
- configs/_base_/models/mask_rcnn_r50_caffe_c4.py +123 -0
- configs/_base_/models/mask_rcnn_r50_fpn.py +120 -0
- configs/_base_/models/mask_rcnn_swin_fpn.py +127 -0
- configs/_base_/models/mask_rcnn_uniformer_fpn.py +121 -0
- configs/_base_/models/retinanet_r50_fpn.py +60 -0
- configs/_base_/models/rpn_r50_caffe_c4.py +56 -0
- configs/_base_/models/rpn_r50_fpn.py +59 -0
- configs/_base_/models/ssd300.py +50 -0
- configs/_base_/schedules/schedule_1x.py +11 -0
- configs/_base_/schedules/schedule_20e.py +11 -0
- configs/_base_/schedules/schedule_2x.py +11 -0
- configs/albu_example/README.md +19 -0
- configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py +73 -0
- configs/atss/README.md +21 -0
- configs/atss/atss_r101_fpn_1x_coco.py +5 -0
- configs/atss/atss_r50_fpn_1x_coco.py +62 -0
- configs/carafe/README.md +32 -0
- configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py +50 -0
- configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py +60 -0
- configs/cascade_rcnn/README.md +55 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py +4 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py +2 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py +2 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py +38 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py +5 -0
- configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py +5 -0
- configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py +13 -0
- configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py +13 -0
- configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py +13 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Uniformer_image_detection
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.4
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Uniformer_image_detection
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.4
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.transforms as T
|
6 |
+
from mmdet.apis import init_detector, inference_detector, show_result_pyplot
|
7 |
+
import mmcv
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
# Device on which to run the model
|
13 |
+
# Set to cuda to load on GPU
|
14 |
+
device = "cpu"
|
15 |
+
checkpoint_file = hf_hub_download(repo_id="Andy1621/uniformer", filename="mask_rcnn_3x_ms_hybrid_small.pth")
|
16 |
+
config_file = './exp/mask_rcnn_3x_ms_hybrid_small/config.py'
|
17 |
+
# init detector
|
18 |
+
# build the model from a config file and a checkpoint file
|
19 |
+
model = init_detector(config_file, checkpoint_file, device='cpu')
|
20 |
+
|
21 |
+
|
22 |
+
def set_example_image(example: list) -> dict:
|
23 |
+
return gr.Image.update(value=example[0])
|
24 |
+
|
25 |
+
|
26 |
+
def inference(img):
|
27 |
+
result = inference_detector(model, img)
|
28 |
+
res_img = show_result_pyplot(model, img, result)
|
29 |
+
return res_img
|
30 |
+
|
31 |
+
|
32 |
+
demo = gr.Blocks()
|
33 |
+
with demo:
|
34 |
+
gr.Markdown(
|
35 |
+
"""
|
36 |
+
# UniFormer-S
|
37 |
+
Gradio demo for <a href='https://github.com/Sense-X/UniFormer' target='_blank'>UniFormer</a>: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
|
38 |
+
"""
|
39 |
+
)
|
40 |
+
|
41 |
+
with gr.Box():
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
with gr.Row():
|
45 |
+
input_image = gr.Image(label='Input Image', type='numpy')
|
46 |
+
with gr.Row():
|
47 |
+
submit_button = gr.Button('Submit')
|
48 |
+
with gr.Column():
|
49 |
+
res_image = gr.Image(type='numpy', label='Detection Resutls')
|
50 |
+
with gr.Row():
|
51 |
+
example_images = gr.Dataset(components=[input_image], samples=[['demo.jpg']])
|
52 |
+
|
53 |
+
gr.Markdown(
|
54 |
+
"""
|
55 |
+
<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>
|
56 |
+
"""
|
57 |
+
)
|
58 |
+
|
59 |
+
submit_button.click(fn=inference, inputs=input_image, outputs=res_image)
|
60 |
+
example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
|
61 |
+
|
62 |
+
demo.launch(enable_queue=True)
|
configs/_base_/datasets/cityscapes_detection.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CityscapesDataset'
|
2 |
+
data_root = 'data/cityscapes/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(
|
9 |
+
type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
|
10 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
11 |
+
dict(type='Normalize', **img_norm_cfg),
|
12 |
+
dict(type='Pad', size_divisor=32),
|
13 |
+
dict(type='DefaultFormatBundle'),
|
14 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
15 |
+
]
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(
|
19 |
+
type='MultiScaleFlipAug',
|
20 |
+
img_scale=(2048, 1024),
|
21 |
+
flip=False,
|
22 |
+
transforms=[
|
23 |
+
dict(type='Resize', keep_ratio=True),
|
24 |
+
dict(type='RandomFlip'),
|
25 |
+
dict(type='Normalize', **img_norm_cfg),
|
26 |
+
dict(type='Pad', size_divisor=32),
|
27 |
+
dict(type='ImageToTensor', keys=['img']),
|
28 |
+
dict(type='Collect', keys=['img']),
|
29 |
+
])
|
30 |
+
]
|
31 |
+
data = dict(
|
32 |
+
samples_per_gpu=1,
|
33 |
+
workers_per_gpu=2,
|
34 |
+
train=dict(
|
35 |
+
type='RepeatDataset',
|
36 |
+
times=8,
|
37 |
+
dataset=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
ann_file=data_root +
|
40 |
+
'annotations/instancesonly_filtered_gtFine_train.json',
|
41 |
+
img_prefix=data_root + 'leftImg8bit/train/',
|
42 |
+
pipeline=train_pipeline)),
|
43 |
+
val=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
ann_file=data_root +
|
46 |
+
'annotations/instancesonly_filtered_gtFine_val.json',
|
47 |
+
img_prefix=data_root + 'leftImg8bit/val/',
|
48 |
+
pipeline=test_pipeline),
|
49 |
+
test=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
ann_file=data_root +
|
52 |
+
'annotations/instancesonly_filtered_gtFine_test.json',
|
53 |
+
img_prefix=data_root + 'leftImg8bit/test/',
|
54 |
+
pipeline=test_pipeline))
|
55 |
+
evaluation = dict(interval=1, metric='bbox')
|
configs/_base_/datasets/cityscapes_instance.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CityscapesDataset'
|
2 |
+
data_root = 'data/cityscapes/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
8 |
+
dict(
|
9 |
+
type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
|
10 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
11 |
+
dict(type='Normalize', **img_norm_cfg),
|
12 |
+
dict(type='Pad', size_divisor=32),
|
13 |
+
dict(type='DefaultFormatBundle'),
|
14 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
15 |
+
]
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(
|
19 |
+
type='MultiScaleFlipAug',
|
20 |
+
img_scale=(2048, 1024),
|
21 |
+
flip=False,
|
22 |
+
transforms=[
|
23 |
+
dict(type='Resize', keep_ratio=True),
|
24 |
+
dict(type='RandomFlip'),
|
25 |
+
dict(type='Normalize', **img_norm_cfg),
|
26 |
+
dict(type='Pad', size_divisor=32),
|
27 |
+
dict(type='ImageToTensor', keys=['img']),
|
28 |
+
dict(type='Collect', keys=['img']),
|
29 |
+
])
|
30 |
+
]
|
31 |
+
data = dict(
|
32 |
+
samples_per_gpu=1,
|
33 |
+
workers_per_gpu=2,
|
34 |
+
train=dict(
|
35 |
+
type='RepeatDataset',
|
36 |
+
times=8,
|
37 |
+
dataset=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
ann_file=data_root +
|
40 |
+
'annotations/instancesonly_filtered_gtFine_train.json',
|
41 |
+
img_prefix=data_root + 'leftImg8bit/train/',
|
42 |
+
pipeline=train_pipeline)),
|
43 |
+
val=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
ann_file=data_root +
|
46 |
+
'annotations/instancesonly_filtered_gtFine_val.json',
|
47 |
+
img_prefix=data_root + 'leftImg8bit/val/',
|
48 |
+
pipeline=test_pipeline),
|
49 |
+
test=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
ann_file=data_root +
|
52 |
+
'annotations/instancesonly_filtered_gtFine_test.json',
|
53 |
+
img_prefix=data_root + 'leftImg8bit/test/',
|
54 |
+
pipeline=test_pipeline))
|
55 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
configs/_base_/datasets/coco_detection.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/coco/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
9 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
10 |
+
dict(type='Normalize', **img_norm_cfg),
|
11 |
+
dict(type='Pad', size_divisor=32),
|
12 |
+
dict(type='DefaultFormatBundle'),
|
13 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
14 |
+
]
|
15 |
+
test_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='MultiScaleFlipAug',
|
19 |
+
img_scale=(1333, 800),
|
20 |
+
flip=False,
|
21 |
+
transforms=[
|
22 |
+
dict(type='Resize', keep_ratio=True),
|
23 |
+
dict(type='RandomFlip'),
|
24 |
+
dict(type='Normalize', **img_norm_cfg),
|
25 |
+
dict(type='Pad', size_divisor=32),
|
26 |
+
dict(type='ImageToTensor', keys=['img']),
|
27 |
+
dict(type='Collect', keys=['img']),
|
28 |
+
])
|
29 |
+
]
|
30 |
+
data = dict(
|
31 |
+
samples_per_gpu=2,
|
32 |
+
workers_per_gpu=2,
|
33 |
+
train=dict(
|
34 |
+
type=dataset_type,
|
35 |
+
ann_file=data_root + 'annotations/instances_train2017.json',
|
36 |
+
img_prefix=data_root + 'train2017/',
|
37 |
+
pipeline=train_pipeline),
|
38 |
+
val=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
41 |
+
img_prefix=data_root + 'val2017/',
|
42 |
+
pipeline=test_pipeline),
|
43 |
+
test=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
46 |
+
img_prefix=data_root + 'val2017/',
|
47 |
+
pipeline=test_pipeline))
|
48 |
+
evaluation = dict(interval=1, metric='bbox')
|
configs/_base_/datasets/coco_instance.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/coco/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
8 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
9 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
10 |
+
dict(type='Normalize', **img_norm_cfg),
|
11 |
+
dict(type='Pad', size_divisor=32),
|
12 |
+
dict(type='DefaultFormatBundle'),
|
13 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
14 |
+
]
|
15 |
+
test_pipeline = [
|
16 |
+
dict(type='LoadImageFromFile'),
|
17 |
+
dict(
|
18 |
+
type='MultiScaleFlipAug',
|
19 |
+
img_scale=(1333, 800),
|
20 |
+
flip=False,
|
21 |
+
transforms=[
|
22 |
+
dict(type='Resize', keep_ratio=True),
|
23 |
+
dict(type='RandomFlip'),
|
24 |
+
dict(type='Normalize', **img_norm_cfg),
|
25 |
+
dict(type='Pad', size_divisor=32),
|
26 |
+
dict(type='ImageToTensor', keys=['img']),
|
27 |
+
dict(type='Collect', keys=['img']),
|
28 |
+
])
|
29 |
+
]
|
30 |
+
data = dict(
|
31 |
+
samples_per_gpu=2,
|
32 |
+
workers_per_gpu=2,
|
33 |
+
train=dict(
|
34 |
+
type=dataset_type,
|
35 |
+
ann_file=data_root + 'annotations/instances_train2017.json',
|
36 |
+
img_prefix=data_root + 'train2017/',
|
37 |
+
pipeline=train_pipeline),
|
38 |
+
val=dict(
|
39 |
+
type=dataset_type,
|
40 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
41 |
+
img_prefix=data_root + 'val2017/',
|
42 |
+
pipeline=test_pipeline),
|
43 |
+
test=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
46 |
+
img_prefix=data_root + 'val2017/',
|
47 |
+
pipeline=test_pipeline))
|
48 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
configs/_base_/datasets/coco_instance_semantic.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/coco/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(
|
8 |
+
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
|
9 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
10 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
11 |
+
dict(type='Normalize', **img_norm_cfg),
|
12 |
+
dict(type='Pad', size_divisor=32),
|
13 |
+
dict(type='SegRescale', scale_factor=1 / 8),
|
14 |
+
dict(type='DefaultFormatBundle'),
|
15 |
+
dict(
|
16 |
+
type='Collect',
|
17 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(1333, 800),
|
24 |
+
flip=False,
|
25 |
+
transforms=[
|
26 |
+
dict(type='Resize', keep_ratio=True),
|
27 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
28 |
+
dict(type='Normalize', **img_norm_cfg),
|
29 |
+
dict(type='Pad', size_divisor=32),
|
30 |
+
dict(type='ImageToTensor', keys=['img']),
|
31 |
+
dict(type='Collect', keys=['img']),
|
32 |
+
])
|
33 |
+
]
|
34 |
+
data = dict(
|
35 |
+
samples_per_gpu=2,
|
36 |
+
workers_per_gpu=2,
|
37 |
+
train=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
ann_file=data_root + 'annotations/instances_train2017.json',
|
40 |
+
img_prefix=data_root + 'train2017/',
|
41 |
+
seg_prefix=data_root + 'stuffthingmaps/train2017/',
|
42 |
+
pipeline=train_pipeline),
|
43 |
+
val=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
46 |
+
img_prefix=data_root + 'val2017/',
|
47 |
+
pipeline=test_pipeline),
|
48 |
+
test=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
51 |
+
img_prefix=data_root + 'val2017/',
|
52 |
+
pipeline=test_pipeline))
|
53 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
configs/_base_/datasets/deepfashion.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'DeepFashionDataset'
|
3 |
+
data_root = 'data/DeepFashion/In-shop/'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
train_pipeline = [
|
7 |
+
dict(type='LoadImageFromFile'),
|
8 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
9 |
+
dict(type='Resize', img_scale=(750, 1101), keep_ratio=True),
|
10 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
11 |
+
dict(type='Normalize', **img_norm_cfg),
|
12 |
+
dict(type='Pad', size_divisor=32),
|
13 |
+
dict(type='DefaultFormatBundle'),
|
14 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
15 |
+
]
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(
|
19 |
+
type='MultiScaleFlipAug',
|
20 |
+
img_scale=(750, 1101),
|
21 |
+
flip=False,
|
22 |
+
transforms=[
|
23 |
+
dict(type='Resize', keep_ratio=True),
|
24 |
+
dict(type='RandomFlip'),
|
25 |
+
dict(type='Normalize', **img_norm_cfg),
|
26 |
+
dict(type='Pad', size_divisor=32),
|
27 |
+
dict(type='ImageToTensor', keys=['img']),
|
28 |
+
dict(type='Collect', keys=['img']),
|
29 |
+
])
|
30 |
+
]
|
31 |
+
data = dict(
|
32 |
+
imgs_per_gpu=2,
|
33 |
+
workers_per_gpu=1,
|
34 |
+
train=dict(
|
35 |
+
type=dataset_type,
|
36 |
+
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
|
37 |
+
img_prefix=data_root + 'Img/',
|
38 |
+
pipeline=train_pipeline,
|
39 |
+
data_root=data_root),
|
40 |
+
val=dict(
|
41 |
+
type=dataset_type,
|
42 |
+
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
|
43 |
+
img_prefix=data_root + 'Img/',
|
44 |
+
pipeline=test_pipeline,
|
45 |
+
data_root=data_root),
|
46 |
+
test=dict(
|
47 |
+
type=dataset_type,
|
48 |
+
ann_file=data_root +
|
49 |
+
'annotations/DeepFashion_segmentation_gallery.json',
|
50 |
+
img_prefix=data_root + 'Img/',
|
51 |
+
pipeline=test_pipeline,
|
52 |
+
data_root=data_root))
|
53 |
+
evaluation = dict(interval=5, metric=['bbox', 'segm'])
|
configs/_base_/datasets/lvis_v0.5_instance.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = 'coco_instance.py'
|
2 |
+
dataset_type = 'LVISV05Dataset'
|
3 |
+
data_root = 'data/lvis_v0.5/'
|
4 |
+
data = dict(
|
5 |
+
samples_per_gpu=2,
|
6 |
+
workers_per_gpu=2,
|
7 |
+
train=dict(
|
8 |
+
_delete_=True,
|
9 |
+
type='ClassBalancedDataset',
|
10 |
+
oversample_thr=1e-3,
|
11 |
+
dataset=dict(
|
12 |
+
type=dataset_type,
|
13 |
+
ann_file=data_root + 'annotations/lvis_v0.5_train.json',
|
14 |
+
img_prefix=data_root + 'train2017/')),
|
15 |
+
val=dict(
|
16 |
+
type=dataset_type,
|
17 |
+
ann_file=data_root + 'annotations/lvis_v0.5_val.json',
|
18 |
+
img_prefix=data_root + 'val2017/'),
|
19 |
+
test=dict(
|
20 |
+
type=dataset_type,
|
21 |
+
ann_file=data_root + 'annotations/lvis_v0.5_val.json',
|
22 |
+
img_prefix=data_root + 'val2017/'))
|
23 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
configs/_base_/datasets/lvis_v1_instance.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = 'coco_instance.py'
|
2 |
+
dataset_type = 'LVISV1Dataset'
|
3 |
+
data_root = 'data/lvis_v1/'
|
4 |
+
data = dict(
|
5 |
+
samples_per_gpu=2,
|
6 |
+
workers_per_gpu=2,
|
7 |
+
train=dict(
|
8 |
+
_delete_=True,
|
9 |
+
type='ClassBalancedDataset',
|
10 |
+
oversample_thr=1e-3,
|
11 |
+
dataset=dict(
|
12 |
+
type=dataset_type,
|
13 |
+
ann_file=data_root + 'annotations/lvis_v1_train.json',
|
14 |
+
img_prefix=data_root)),
|
15 |
+
val=dict(
|
16 |
+
type=dataset_type,
|
17 |
+
ann_file=data_root + 'annotations/lvis_v1_val.json',
|
18 |
+
img_prefix=data_root),
|
19 |
+
test=dict(
|
20 |
+
type=dataset_type,
|
21 |
+
ann_file=data_root + 'annotations/lvis_v1_val.json',
|
22 |
+
img_prefix=data_root))
|
23 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
configs/_base_/datasets/voc0712.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'VOCDataset'
|
3 |
+
data_root = 'data/VOCdevkit/'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
train_pipeline = [
|
7 |
+
dict(type='LoadImageFromFile'),
|
8 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
9 |
+
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
|
10 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
11 |
+
dict(type='Normalize', **img_norm_cfg),
|
12 |
+
dict(type='Pad', size_divisor=32),
|
13 |
+
dict(type='DefaultFormatBundle'),
|
14 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
15 |
+
]
|
16 |
+
test_pipeline = [
|
17 |
+
dict(type='LoadImageFromFile'),
|
18 |
+
dict(
|
19 |
+
type='MultiScaleFlipAug',
|
20 |
+
img_scale=(1000, 600),
|
21 |
+
flip=False,
|
22 |
+
transforms=[
|
23 |
+
dict(type='Resize', keep_ratio=True),
|
24 |
+
dict(type='RandomFlip'),
|
25 |
+
dict(type='Normalize', **img_norm_cfg),
|
26 |
+
dict(type='Pad', size_divisor=32),
|
27 |
+
dict(type='ImageToTensor', keys=['img']),
|
28 |
+
dict(type='Collect', keys=['img']),
|
29 |
+
])
|
30 |
+
]
|
31 |
+
data = dict(
|
32 |
+
samples_per_gpu=2,
|
33 |
+
workers_per_gpu=2,
|
34 |
+
train=dict(
|
35 |
+
type='RepeatDataset',
|
36 |
+
times=3,
|
37 |
+
dataset=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
ann_file=[
|
40 |
+
data_root + 'VOC2007/ImageSets/Main/trainval.txt',
|
41 |
+
data_root + 'VOC2012/ImageSets/Main/trainval.txt'
|
42 |
+
],
|
43 |
+
img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'],
|
44 |
+
pipeline=train_pipeline)),
|
45 |
+
val=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
|
48 |
+
img_prefix=data_root + 'VOC2007/',
|
49 |
+
pipeline=test_pipeline),
|
50 |
+
test=dict(
|
51 |
+
type=dataset_type,
|
52 |
+
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
|
53 |
+
img_prefix=data_root + 'VOC2007/',
|
54 |
+
pipeline=test_pipeline))
|
55 |
+
evaluation = dict(interval=1, metric='mAP')
|
configs/_base_/datasets/wider_face.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'WIDERFaceDataset'
|
3 |
+
data_root = 'data/WIDERFace/'
|
4 |
+
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile', to_float32=True),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(
|
9 |
+
type='PhotoMetricDistortion',
|
10 |
+
brightness_delta=32,
|
11 |
+
contrast_range=(0.5, 1.5),
|
12 |
+
saturation_range=(0.5, 1.5),
|
13 |
+
hue_delta=18),
|
14 |
+
dict(
|
15 |
+
type='Expand',
|
16 |
+
mean=img_norm_cfg['mean'],
|
17 |
+
to_rgb=img_norm_cfg['to_rgb'],
|
18 |
+
ratio_range=(1, 4)),
|
19 |
+
dict(
|
20 |
+
type='MinIoURandomCrop',
|
21 |
+
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
|
22 |
+
min_crop_size=0.3),
|
23 |
+
dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
|
24 |
+
dict(type='Normalize', **img_norm_cfg),
|
25 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
26 |
+
dict(type='DefaultFormatBundle'),
|
27 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
28 |
+
]
|
29 |
+
test_pipeline = [
|
30 |
+
dict(type='LoadImageFromFile'),
|
31 |
+
dict(
|
32 |
+
type='MultiScaleFlipAug',
|
33 |
+
img_scale=(300, 300),
|
34 |
+
flip=False,
|
35 |
+
transforms=[
|
36 |
+
dict(type='Resize', keep_ratio=False),
|
37 |
+
dict(type='Normalize', **img_norm_cfg),
|
38 |
+
dict(type='ImageToTensor', keys=['img']),
|
39 |
+
dict(type='Collect', keys=['img']),
|
40 |
+
])
|
41 |
+
]
|
42 |
+
data = dict(
|
43 |
+
samples_per_gpu=60,
|
44 |
+
workers_per_gpu=2,
|
45 |
+
train=dict(
|
46 |
+
type='RepeatDataset',
|
47 |
+
times=2,
|
48 |
+
dataset=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
ann_file=data_root + 'train.txt',
|
51 |
+
img_prefix=data_root + 'WIDER_train/',
|
52 |
+
min_size=17,
|
53 |
+
pipeline=train_pipeline)),
|
54 |
+
val=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
ann_file=data_root + 'val.txt',
|
57 |
+
img_prefix=data_root + 'WIDER_val/',
|
58 |
+
pipeline=test_pipeline),
|
59 |
+
test=dict(
|
60 |
+
type=dataset_type,
|
61 |
+
ann_file=data_root + 'val.txt',
|
62 |
+
img_prefix=data_root + 'WIDER_val/',
|
63 |
+
pipeline=test_pipeline))
|
configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoint_config = dict(interval=1)
|
2 |
+
# yapf:disable
|
3 |
+
log_config = dict(
|
4 |
+
interval=50,
|
5 |
+
hooks=[
|
6 |
+
dict(type='TextLoggerHook'),
|
7 |
+
# dict(type='TensorboardLoggerHook')
|
8 |
+
])
|
9 |
+
# yapf:enable
|
10 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
11 |
+
|
12 |
+
dist_params = dict(backend='nccl')
|
13 |
+
log_level = 'INFO'
|
14 |
+
load_from = None
|
15 |
+
resume_from = None
|
16 |
+
workflow = [('train', 1)]
|
configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
pretrained='torchvision://resnet50',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
num_outs=5),
|
19 |
+
rpn_head=dict(
|
20 |
+
type='RPNHead',
|
21 |
+
in_channels=256,
|
22 |
+
feat_channels=256,
|
23 |
+
anchor_generator=dict(
|
24 |
+
type='AnchorGenerator',
|
25 |
+
scales=[8],
|
26 |
+
ratios=[0.5, 1.0, 2.0],
|
27 |
+
strides=[4, 8, 16, 32, 64]),
|
28 |
+
bbox_coder=dict(
|
29 |
+
type='DeltaXYWHBBoxCoder',
|
30 |
+
target_means=[.0, .0, .0, .0],
|
31 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
32 |
+
loss_cls=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
34 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
35 |
+
roi_head=dict(
|
36 |
+
type='CascadeRoIHead',
|
37 |
+
num_stages=3,
|
38 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
39 |
+
bbox_roi_extractor=dict(
|
40 |
+
type='SingleRoIExtractor',
|
41 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
42 |
+
out_channels=256,
|
43 |
+
featmap_strides=[4, 8, 16, 32]),
|
44 |
+
bbox_head=[
|
45 |
+
dict(
|
46 |
+
type='Shared2FCBBoxHead',
|
47 |
+
in_channels=256,
|
48 |
+
fc_out_channels=1024,
|
49 |
+
roi_feat_size=7,
|
50 |
+
num_classes=80,
|
51 |
+
bbox_coder=dict(
|
52 |
+
type='DeltaXYWHBBoxCoder',
|
53 |
+
target_means=[0., 0., 0., 0.],
|
54 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
55 |
+
reg_class_agnostic=True,
|
56 |
+
loss_cls=dict(
|
57 |
+
type='CrossEntropyLoss',
|
58 |
+
use_sigmoid=False,
|
59 |
+
loss_weight=1.0),
|
60 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
61 |
+
loss_weight=1.0)),
|
62 |
+
dict(
|
63 |
+
type='Shared2FCBBoxHead',
|
64 |
+
in_channels=256,
|
65 |
+
fc_out_channels=1024,
|
66 |
+
roi_feat_size=7,
|
67 |
+
num_classes=80,
|
68 |
+
bbox_coder=dict(
|
69 |
+
type='DeltaXYWHBBoxCoder',
|
70 |
+
target_means=[0., 0., 0., 0.],
|
71 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
72 |
+
reg_class_agnostic=True,
|
73 |
+
loss_cls=dict(
|
74 |
+
type='CrossEntropyLoss',
|
75 |
+
use_sigmoid=False,
|
76 |
+
loss_weight=1.0),
|
77 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
78 |
+
loss_weight=1.0)),
|
79 |
+
dict(
|
80 |
+
type='Shared2FCBBoxHead',
|
81 |
+
in_channels=256,
|
82 |
+
fc_out_channels=1024,
|
83 |
+
roi_feat_size=7,
|
84 |
+
num_classes=80,
|
85 |
+
bbox_coder=dict(
|
86 |
+
type='DeltaXYWHBBoxCoder',
|
87 |
+
target_means=[0., 0., 0., 0.],
|
88 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
loss_cls=dict(
|
91 |
+
type='CrossEntropyLoss',
|
92 |
+
use_sigmoid=False,
|
93 |
+
loss_weight=1.0),
|
94 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
95 |
+
],
|
96 |
+
mask_roi_extractor=dict(
|
97 |
+
type='SingleRoIExtractor',
|
98 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
99 |
+
out_channels=256,
|
100 |
+
featmap_strides=[4, 8, 16, 32]),
|
101 |
+
mask_head=dict(
|
102 |
+
type='FCNMaskHead',
|
103 |
+
num_convs=4,
|
104 |
+
in_channels=256,
|
105 |
+
conv_out_channels=256,
|
106 |
+
num_classes=80,
|
107 |
+
loss_mask=dict(
|
108 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
109 |
+
# model training and testing settings
|
110 |
+
train_cfg=dict(
|
111 |
+
rpn=dict(
|
112 |
+
assigner=dict(
|
113 |
+
type='MaxIoUAssigner',
|
114 |
+
pos_iou_thr=0.7,
|
115 |
+
neg_iou_thr=0.3,
|
116 |
+
min_pos_iou=0.3,
|
117 |
+
match_low_quality=True,
|
118 |
+
ignore_iof_thr=-1),
|
119 |
+
sampler=dict(
|
120 |
+
type='RandomSampler',
|
121 |
+
num=256,
|
122 |
+
pos_fraction=0.5,
|
123 |
+
neg_pos_ub=-1,
|
124 |
+
add_gt_as_proposals=False),
|
125 |
+
allowed_border=0,
|
126 |
+
pos_weight=-1,
|
127 |
+
debug=False),
|
128 |
+
rpn_proposal=dict(
|
129 |
+
nms_pre=2000,
|
130 |
+
max_per_img=2000,
|
131 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
132 |
+
min_bbox_size=0),
|
133 |
+
rcnn=[
|
134 |
+
dict(
|
135 |
+
assigner=dict(
|
136 |
+
type='MaxIoUAssigner',
|
137 |
+
pos_iou_thr=0.5,
|
138 |
+
neg_iou_thr=0.5,
|
139 |
+
min_pos_iou=0.5,
|
140 |
+
match_low_quality=False,
|
141 |
+
ignore_iof_thr=-1),
|
142 |
+
sampler=dict(
|
143 |
+
type='RandomSampler',
|
144 |
+
num=512,
|
145 |
+
pos_fraction=0.25,
|
146 |
+
neg_pos_ub=-1,
|
147 |
+
add_gt_as_proposals=True),
|
148 |
+
mask_size=28,
|
149 |
+
pos_weight=-1,
|
150 |
+
debug=False),
|
151 |
+
dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.6,
|
155 |
+
neg_iou_thr=0.6,
|
156 |
+
min_pos_iou=0.6,
|
157 |
+
match_low_quality=False,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.25,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=True),
|
165 |
+
mask_size=28,
|
166 |
+
pos_weight=-1,
|
167 |
+
debug=False),
|
168 |
+
dict(
|
169 |
+
assigner=dict(
|
170 |
+
type='MaxIoUAssigner',
|
171 |
+
pos_iou_thr=0.7,
|
172 |
+
neg_iou_thr=0.7,
|
173 |
+
min_pos_iou=0.7,
|
174 |
+
match_low_quality=False,
|
175 |
+
ignore_iof_thr=-1),
|
176 |
+
sampler=dict(
|
177 |
+
type='RandomSampler',
|
178 |
+
num=512,
|
179 |
+
pos_fraction=0.25,
|
180 |
+
neg_pos_ub=-1,
|
181 |
+
add_gt_as_proposals=True),
|
182 |
+
mask_size=28,
|
183 |
+
pos_weight=-1,
|
184 |
+
debug=False)
|
185 |
+
]),
|
186 |
+
test_cfg=dict(
|
187 |
+
rpn=dict(
|
188 |
+
nms_pre=1000,
|
189 |
+
max_per_img=1000,
|
190 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
191 |
+
min_bbox_size=0),
|
192 |
+
rcnn=dict(
|
193 |
+
score_thr=0.05,
|
194 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
195 |
+
max_per_img=100,
|
196 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/cascade_mask_rcnn_swin_fpn.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
pretrained=None,
|
5 |
+
backbone=dict(
|
6 |
+
type='SwinTransformer',
|
7 |
+
embed_dim=96,
|
8 |
+
depths=[2, 2, 6, 2],
|
9 |
+
num_heads=[3, 6, 12, 24],
|
10 |
+
window_size=7,
|
11 |
+
mlp_ratio=4.,
|
12 |
+
qkv_bias=True,
|
13 |
+
qk_scale=None,
|
14 |
+
drop_rate=0.,
|
15 |
+
attn_drop_rate=0.,
|
16 |
+
drop_path_rate=0.2,
|
17 |
+
ape=False,
|
18 |
+
patch_norm=True,
|
19 |
+
out_indices=(0, 1, 2, 3),
|
20 |
+
use_checkpoint=False),
|
21 |
+
neck=dict(
|
22 |
+
type='FPN',
|
23 |
+
in_channels=[96, 192, 384, 768],
|
24 |
+
out_channels=256,
|
25 |
+
num_outs=5),
|
26 |
+
rpn_head=dict(
|
27 |
+
type='RPNHead',
|
28 |
+
in_channels=256,
|
29 |
+
feat_channels=256,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
scales=[8],
|
33 |
+
ratios=[0.5, 1.0, 2.0],
|
34 |
+
strides=[4, 8, 16, 32, 64]),
|
35 |
+
bbox_coder=dict(
|
36 |
+
type='DeltaXYWHBBoxCoder',
|
37 |
+
target_means=[.0, .0, .0, .0],
|
38 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
39 |
+
loss_cls=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
41 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
42 |
+
roi_head=dict(
|
43 |
+
type='CascadeRoIHead',
|
44 |
+
num_stages=3,
|
45 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
46 |
+
bbox_roi_extractor=dict(
|
47 |
+
type='SingleRoIExtractor',
|
48 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
49 |
+
out_channels=256,
|
50 |
+
featmap_strides=[4, 8, 16, 32]),
|
51 |
+
bbox_head=[
|
52 |
+
dict(
|
53 |
+
type='Shared2FCBBoxHead',
|
54 |
+
in_channels=256,
|
55 |
+
fc_out_channels=1024,
|
56 |
+
roi_feat_size=7,
|
57 |
+
num_classes=80,
|
58 |
+
bbox_coder=dict(
|
59 |
+
type='DeltaXYWHBBoxCoder',
|
60 |
+
target_means=[0., 0., 0., 0.],
|
61 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
62 |
+
reg_class_agnostic=True,
|
63 |
+
loss_cls=dict(
|
64 |
+
type='CrossEntropyLoss',
|
65 |
+
use_sigmoid=False,
|
66 |
+
loss_weight=1.0),
|
67 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
68 |
+
loss_weight=1.0)),
|
69 |
+
dict(
|
70 |
+
type='Shared2FCBBoxHead',
|
71 |
+
in_channels=256,
|
72 |
+
fc_out_channels=1024,
|
73 |
+
roi_feat_size=7,
|
74 |
+
num_classes=80,
|
75 |
+
bbox_coder=dict(
|
76 |
+
type='DeltaXYWHBBoxCoder',
|
77 |
+
target_means=[0., 0., 0., 0.],
|
78 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
79 |
+
reg_class_agnostic=True,
|
80 |
+
loss_cls=dict(
|
81 |
+
type='CrossEntropyLoss',
|
82 |
+
use_sigmoid=False,
|
83 |
+
loss_weight=1.0),
|
84 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
85 |
+
loss_weight=1.0)),
|
86 |
+
dict(
|
87 |
+
type='Shared2FCBBoxHead',
|
88 |
+
in_channels=256,
|
89 |
+
fc_out_channels=1024,
|
90 |
+
roi_feat_size=7,
|
91 |
+
num_classes=80,
|
92 |
+
bbox_coder=dict(
|
93 |
+
type='DeltaXYWHBBoxCoder',
|
94 |
+
target_means=[0., 0., 0., 0.],
|
95 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
96 |
+
reg_class_agnostic=True,
|
97 |
+
loss_cls=dict(
|
98 |
+
type='CrossEntropyLoss',
|
99 |
+
use_sigmoid=False,
|
100 |
+
loss_weight=1.0),
|
101 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
102 |
+
],
|
103 |
+
mask_roi_extractor=dict(
|
104 |
+
type='SingleRoIExtractor',
|
105 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
106 |
+
out_channels=256,
|
107 |
+
featmap_strides=[4, 8, 16, 32]),
|
108 |
+
mask_head=dict(
|
109 |
+
type='FCNMaskHead',
|
110 |
+
num_convs=4,
|
111 |
+
in_channels=256,
|
112 |
+
conv_out_channels=256,
|
113 |
+
num_classes=80,
|
114 |
+
loss_mask=dict(
|
115 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
116 |
+
# model training and testing settings
|
117 |
+
train_cfg = dict(
|
118 |
+
rpn=dict(
|
119 |
+
assigner=dict(
|
120 |
+
type='MaxIoUAssigner',
|
121 |
+
pos_iou_thr=0.7,
|
122 |
+
neg_iou_thr=0.3,
|
123 |
+
min_pos_iou=0.3,
|
124 |
+
match_low_quality=True,
|
125 |
+
ignore_iof_thr=-1),
|
126 |
+
sampler=dict(
|
127 |
+
type='RandomSampler',
|
128 |
+
num=256,
|
129 |
+
pos_fraction=0.5,
|
130 |
+
neg_pos_ub=-1,
|
131 |
+
add_gt_as_proposals=False),
|
132 |
+
allowed_border=0,
|
133 |
+
pos_weight=-1,
|
134 |
+
debug=False),
|
135 |
+
rpn_proposal=dict(
|
136 |
+
nms_across_levels=False,
|
137 |
+
nms_pre=2000,
|
138 |
+
nms_post=2000,
|
139 |
+
max_per_img=2000,
|
140 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
141 |
+
min_bbox_size=0),
|
142 |
+
rcnn=[
|
143 |
+
dict(
|
144 |
+
assigner=dict(
|
145 |
+
type='MaxIoUAssigner',
|
146 |
+
pos_iou_thr=0.5,
|
147 |
+
neg_iou_thr=0.5,
|
148 |
+
min_pos_iou=0.5,
|
149 |
+
match_low_quality=False,
|
150 |
+
ignore_iof_thr=-1),
|
151 |
+
sampler=dict(
|
152 |
+
type='RandomSampler',
|
153 |
+
num=512,
|
154 |
+
pos_fraction=0.25,
|
155 |
+
neg_pos_ub=-1,
|
156 |
+
add_gt_as_proposals=True),
|
157 |
+
mask_size=28,
|
158 |
+
pos_weight=-1,
|
159 |
+
debug=False),
|
160 |
+
dict(
|
161 |
+
assigner=dict(
|
162 |
+
type='MaxIoUAssigner',
|
163 |
+
pos_iou_thr=0.6,
|
164 |
+
neg_iou_thr=0.6,
|
165 |
+
min_pos_iou=0.6,
|
166 |
+
match_low_quality=False,
|
167 |
+
ignore_iof_thr=-1),
|
168 |
+
sampler=dict(
|
169 |
+
type='RandomSampler',
|
170 |
+
num=512,
|
171 |
+
pos_fraction=0.25,
|
172 |
+
neg_pos_ub=-1,
|
173 |
+
add_gt_as_proposals=True),
|
174 |
+
mask_size=28,
|
175 |
+
pos_weight=-1,
|
176 |
+
debug=False),
|
177 |
+
dict(
|
178 |
+
assigner=dict(
|
179 |
+
type='MaxIoUAssigner',
|
180 |
+
pos_iou_thr=0.7,
|
181 |
+
neg_iou_thr=0.7,
|
182 |
+
min_pos_iou=0.7,
|
183 |
+
match_low_quality=False,
|
184 |
+
ignore_iof_thr=-1),
|
185 |
+
sampler=dict(
|
186 |
+
type='RandomSampler',
|
187 |
+
num=512,
|
188 |
+
pos_fraction=0.25,
|
189 |
+
neg_pos_ub=-1,
|
190 |
+
add_gt_as_proposals=True),
|
191 |
+
mask_size=28,
|
192 |
+
pos_weight=-1,
|
193 |
+
debug=False)
|
194 |
+
]),
|
195 |
+
test_cfg = dict(
|
196 |
+
rpn=dict(
|
197 |
+
nms_across_levels=False,
|
198 |
+
nms_pre=1000,
|
199 |
+
nms_post=1000,
|
200 |
+
max_per_img=1000,
|
201 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
202 |
+
min_bbox_size=0),
|
203 |
+
rcnn=dict(
|
204 |
+
score_thr=0.05,
|
205 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
206 |
+
max_per_img=100,
|
207 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/cascade_mask_rcnn_uniformer_fpn.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
pretrained=None,
|
5 |
+
backbone=dict(
|
6 |
+
type='UniFormer',
|
7 |
+
embed_dim=[64, 128, 320, 512],
|
8 |
+
layers=[3, 4, 8, 3],
|
9 |
+
head_dim=64,
|
10 |
+
mlp_ratio=4.,
|
11 |
+
qkv_bias=True,
|
12 |
+
drop_rate=0.,
|
13 |
+
attn_drop_rate=0.,
|
14 |
+
drop_path_rate=0.2),
|
15 |
+
neck=dict(
|
16 |
+
type='FPN',
|
17 |
+
in_channels=[64, 128, 320, 512],
|
18 |
+
out_channels=256,
|
19 |
+
num_outs=5),
|
20 |
+
rpn_head=dict(
|
21 |
+
type='RPNHead',
|
22 |
+
in_channels=256,
|
23 |
+
feat_channels=256,
|
24 |
+
anchor_generator=dict(
|
25 |
+
type='AnchorGenerator',
|
26 |
+
scales=[8],
|
27 |
+
ratios=[0.5, 1.0, 2.0],
|
28 |
+
strides=[4, 8, 16, 32, 64]),
|
29 |
+
bbox_coder=dict(
|
30 |
+
type='DeltaXYWHBBoxCoder',
|
31 |
+
target_means=[.0, .0, .0, .0],
|
32 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
33 |
+
loss_cls=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
35 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
36 |
+
roi_head=dict(
|
37 |
+
type='CascadeRoIHead',
|
38 |
+
num_stages=3,
|
39 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
40 |
+
bbox_roi_extractor=dict(
|
41 |
+
type='SingleRoIExtractor',
|
42 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
43 |
+
out_channels=256,
|
44 |
+
featmap_strides=[4, 8, 16, 32]),
|
45 |
+
bbox_head=[
|
46 |
+
dict(
|
47 |
+
type='Shared2FCBBoxHead',
|
48 |
+
in_channels=256,
|
49 |
+
fc_out_channels=1024,
|
50 |
+
roi_feat_size=7,
|
51 |
+
num_classes=80,
|
52 |
+
bbox_coder=dict(
|
53 |
+
type='DeltaXYWHBBoxCoder',
|
54 |
+
target_means=[0., 0., 0., 0.],
|
55 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
56 |
+
reg_class_agnostic=True,
|
57 |
+
loss_cls=dict(
|
58 |
+
type='CrossEntropyLoss',
|
59 |
+
use_sigmoid=False,
|
60 |
+
loss_weight=1.0),
|
61 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
62 |
+
loss_weight=1.0)),
|
63 |
+
dict(
|
64 |
+
type='Shared2FCBBoxHead',
|
65 |
+
in_channels=256,
|
66 |
+
fc_out_channels=1024,
|
67 |
+
roi_feat_size=7,
|
68 |
+
num_classes=80,
|
69 |
+
bbox_coder=dict(
|
70 |
+
type='DeltaXYWHBBoxCoder',
|
71 |
+
target_means=[0., 0., 0., 0.],
|
72 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
73 |
+
reg_class_agnostic=True,
|
74 |
+
loss_cls=dict(
|
75 |
+
type='CrossEntropyLoss',
|
76 |
+
use_sigmoid=False,
|
77 |
+
loss_weight=1.0),
|
78 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
79 |
+
loss_weight=1.0)),
|
80 |
+
dict(
|
81 |
+
type='Shared2FCBBoxHead',
|
82 |
+
in_channels=256,
|
83 |
+
fc_out_channels=1024,
|
84 |
+
roi_feat_size=7,
|
85 |
+
num_classes=80,
|
86 |
+
bbox_coder=dict(
|
87 |
+
type='DeltaXYWHBBoxCoder',
|
88 |
+
target_means=[0., 0., 0., 0.],
|
89 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
90 |
+
reg_class_agnostic=True,
|
91 |
+
loss_cls=dict(
|
92 |
+
type='CrossEntropyLoss',
|
93 |
+
use_sigmoid=False,
|
94 |
+
loss_weight=1.0),
|
95 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
96 |
+
],
|
97 |
+
mask_roi_extractor=dict(
|
98 |
+
type='SingleRoIExtractor',
|
99 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
100 |
+
out_channels=256,
|
101 |
+
featmap_strides=[4, 8, 16, 32]),
|
102 |
+
mask_head=dict(
|
103 |
+
type='FCNMaskHead',
|
104 |
+
num_convs=4,
|
105 |
+
in_channels=256,
|
106 |
+
conv_out_channels=256,
|
107 |
+
num_classes=80,
|
108 |
+
loss_mask=dict(
|
109 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
110 |
+
# model training and testing settings
|
111 |
+
train_cfg = dict(
|
112 |
+
rpn=dict(
|
113 |
+
assigner=dict(
|
114 |
+
type='MaxIoUAssigner',
|
115 |
+
pos_iou_thr=0.7,
|
116 |
+
neg_iou_thr=0.3,
|
117 |
+
min_pos_iou=0.3,
|
118 |
+
match_low_quality=True,
|
119 |
+
ignore_iof_thr=-1),
|
120 |
+
sampler=dict(
|
121 |
+
type='RandomSampler',
|
122 |
+
num=256,
|
123 |
+
pos_fraction=0.5,
|
124 |
+
neg_pos_ub=-1,
|
125 |
+
add_gt_as_proposals=False),
|
126 |
+
allowed_border=0,
|
127 |
+
pos_weight=-1,
|
128 |
+
debug=False),
|
129 |
+
rpn_proposal=dict(
|
130 |
+
nms_across_levels=False,
|
131 |
+
nms_pre=2000,
|
132 |
+
nms_post=2000,
|
133 |
+
max_per_img=2000,
|
134 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
135 |
+
min_bbox_size=0),
|
136 |
+
rcnn=[
|
137 |
+
dict(
|
138 |
+
assigner=dict(
|
139 |
+
type='MaxIoUAssigner',
|
140 |
+
pos_iou_thr=0.5,
|
141 |
+
neg_iou_thr=0.5,
|
142 |
+
min_pos_iou=0.5,
|
143 |
+
match_low_quality=False,
|
144 |
+
ignore_iof_thr=-1),
|
145 |
+
sampler=dict(
|
146 |
+
type='RandomSampler',
|
147 |
+
num=512,
|
148 |
+
pos_fraction=0.25,
|
149 |
+
neg_pos_ub=-1,
|
150 |
+
add_gt_as_proposals=True),
|
151 |
+
mask_size=28,
|
152 |
+
pos_weight=-1,
|
153 |
+
debug=False),
|
154 |
+
dict(
|
155 |
+
assigner=dict(
|
156 |
+
type='MaxIoUAssigner',
|
157 |
+
pos_iou_thr=0.6,
|
158 |
+
neg_iou_thr=0.6,
|
159 |
+
min_pos_iou=0.6,
|
160 |
+
match_low_quality=False,
|
161 |
+
ignore_iof_thr=-1),
|
162 |
+
sampler=dict(
|
163 |
+
type='RandomSampler',
|
164 |
+
num=512,
|
165 |
+
pos_fraction=0.25,
|
166 |
+
neg_pos_ub=-1,
|
167 |
+
add_gt_as_proposals=True),
|
168 |
+
mask_size=28,
|
169 |
+
pos_weight=-1,
|
170 |
+
debug=False),
|
171 |
+
dict(
|
172 |
+
assigner=dict(
|
173 |
+
type='MaxIoUAssigner',
|
174 |
+
pos_iou_thr=0.7,
|
175 |
+
neg_iou_thr=0.7,
|
176 |
+
min_pos_iou=0.7,
|
177 |
+
match_low_quality=False,
|
178 |
+
ignore_iof_thr=-1),
|
179 |
+
sampler=dict(
|
180 |
+
type='RandomSampler',
|
181 |
+
num=512,
|
182 |
+
pos_fraction=0.25,
|
183 |
+
neg_pos_ub=-1,
|
184 |
+
add_gt_as_proposals=True),
|
185 |
+
mask_size=28,
|
186 |
+
pos_weight=-1,
|
187 |
+
debug=False)
|
188 |
+
]),
|
189 |
+
test_cfg = dict(
|
190 |
+
rpn=dict(
|
191 |
+
nms_across_levels=False,
|
192 |
+
nms_pre=1000,
|
193 |
+
nms_post=1000,
|
194 |
+
max_per_img=1000,
|
195 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
196 |
+
min_bbox_size=0),
|
197 |
+
rcnn=dict(
|
198 |
+
score_thr=0.05,
|
199 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
200 |
+
max_per_img=100,
|
201 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/cascade_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
pretrained='torchvision://resnet50',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
num_outs=5),
|
19 |
+
rpn_head=dict(
|
20 |
+
type='RPNHead',
|
21 |
+
in_channels=256,
|
22 |
+
feat_channels=256,
|
23 |
+
anchor_generator=dict(
|
24 |
+
type='AnchorGenerator',
|
25 |
+
scales=[8],
|
26 |
+
ratios=[0.5, 1.0, 2.0],
|
27 |
+
strides=[4, 8, 16, 32, 64]),
|
28 |
+
bbox_coder=dict(
|
29 |
+
type='DeltaXYWHBBoxCoder',
|
30 |
+
target_means=[.0, .0, .0, .0],
|
31 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
32 |
+
loss_cls=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
34 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
35 |
+
roi_head=dict(
|
36 |
+
type='CascadeRoIHead',
|
37 |
+
num_stages=3,
|
38 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
39 |
+
bbox_roi_extractor=dict(
|
40 |
+
type='SingleRoIExtractor',
|
41 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
42 |
+
out_channels=256,
|
43 |
+
featmap_strides=[4, 8, 16, 32]),
|
44 |
+
bbox_head=[
|
45 |
+
dict(
|
46 |
+
type='Shared2FCBBoxHead',
|
47 |
+
in_channels=256,
|
48 |
+
fc_out_channels=1024,
|
49 |
+
roi_feat_size=7,
|
50 |
+
num_classes=80,
|
51 |
+
bbox_coder=dict(
|
52 |
+
type='DeltaXYWHBBoxCoder',
|
53 |
+
target_means=[0., 0., 0., 0.],
|
54 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
55 |
+
reg_class_agnostic=True,
|
56 |
+
loss_cls=dict(
|
57 |
+
type='CrossEntropyLoss',
|
58 |
+
use_sigmoid=False,
|
59 |
+
loss_weight=1.0),
|
60 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
61 |
+
loss_weight=1.0)),
|
62 |
+
dict(
|
63 |
+
type='Shared2FCBBoxHead',
|
64 |
+
in_channels=256,
|
65 |
+
fc_out_channels=1024,
|
66 |
+
roi_feat_size=7,
|
67 |
+
num_classes=80,
|
68 |
+
bbox_coder=dict(
|
69 |
+
type='DeltaXYWHBBoxCoder',
|
70 |
+
target_means=[0., 0., 0., 0.],
|
71 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
72 |
+
reg_class_agnostic=True,
|
73 |
+
loss_cls=dict(
|
74 |
+
type='CrossEntropyLoss',
|
75 |
+
use_sigmoid=False,
|
76 |
+
loss_weight=1.0),
|
77 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
78 |
+
loss_weight=1.0)),
|
79 |
+
dict(
|
80 |
+
type='Shared2FCBBoxHead',
|
81 |
+
in_channels=256,
|
82 |
+
fc_out_channels=1024,
|
83 |
+
roi_feat_size=7,
|
84 |
+
num_classes=80,
|
85 |
+
bbox_coder=dict(
|
86 |
+
type='DeltaXYWHBBoxCoder',
|
87 |
+
target_means=[0., 0., 0., 0.],
|
88 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
loss_cls=dict(
|
91 |
+
type='CrossEntropyLoss',
|
92 |
+
use_sigmoid=False,
|
93 |
+
loss_weight=1.0),
|
94 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
95 |
+
]),
|
96 |
+
# model training and testing settings
|
97 |
+
train_cfg=dict(
|
98 |
+
rpn=dict(
|
99 |
+
assigner=dict(
|
100 |
+
type='MaxIoUAssigner',
|
101 |
+
pos_iou_thr=0.7,
|
102 |
+
neg_iou_thr=0.3,
|
103 |
+
min_pos_iou=0.3,
|
104 |
+
match_low_quality=True,
|
105 |
+
ignore_iof_thr=-1),
|
106 |
+
sampler=dict(
|
107 |
+
type='RandomSampler',
|
108 |
+
num=256,
|
109 |
+
pos_fraction=0.5,
|
110 |
+
neg_pos_ub=-1,
|
111 |
+
add_gt_as_proposals=False),
|
112 |
+
allowed_border=0,
|
113 |
+
pos_weight=-1,
|
114 |
+
debug=False),
|
115 |
+
rpn_proposal=dict(
|
116 |
+
nms_pre=2000,
|
117 |
+
max_per_img=2000,
|
118 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
119 |
+
min_bbox_size=0),
|
120 |
+
rcnn=[
|
121 |
+
dict(
|
122 |
+
assigner=dict(
|
123 |
+
type='MaxIoUAssigner',
|
124 |
+
pos_iou_thr=0.5,
|
125 |
+
neg_iou_thr=0.5,
|
126 |
+
min_pos_iou=0.5,
|
127 |
+
match_low_quality=False,
|
128 |
+
ignore_iof_thr=-1),
|
129 |
+
sampler=dict(
|
130 |
+
type='RandomSampler',
|
131 |
+
num=512,
|
132 |
+
pos_fraction=0.25,
|
133 |
+
neg_pos_ub=-1,
|
134 |
+
add_gt_as_proposals=True),
|
135 |
+
pos_weight=-1,
|
136 |
+
debug=False),
|
137 |
+
dict(
|
138 |
+
assigner=dict(
|
139 |
+
type='MaxIoUAssigner',
|
140 |
+
pos_iou_thr=0.6,
|
141 |
+
neg_iou_thr=0.6,
|
142 |
+
min_pos_iou=0.6,
|
143 |
+
match_low_quality=False,
|
144 |
+
ignore_iof_thr=-1),
|
145 |
+
sampler=dict(
|
146 |
+
type='RandomSampler',
|
147 |
+
num=512,
|
148 |
+
pos_fraction=0.25,
|
149 |
+
neg_pos_ub=-1,
|
150 |
+
add_gt_as_proposals=True),
|
151 |
+
pos_weight=-1,
|
152 |
+
debug=False),
|
153 |
+
dict(
|
154 |
+
assigner=dict(
|
155 |
+
type='MaxIoUAssigner',
|
156 |
+
pos_iou_thr=0.7,
|
157 |
+
neg_iou_thr=0.7,
|
158 |
+
min_pos_iou=0.7,
|
159 |
+
match_low_quality=False,
|
160 |
+
ignore_iof_thr=-1),
|
161 |
+
sampler=dict(
|
162 |
+
type='RandomSampler',
|
163 |
+
num=512,
|
164 |
+
pos_fraction=0.25,
|
165 |
+
neg_pos_ub=-1,
|
166 |
+
add_gt_as_proposals=True),
|
167 |
+
pos_weight=-1,
|
168 |
+
debug=False)
|
169 |
+
]),
|
170 |
+
test_cfg=dict(
|
171 |
+
rpn=dict(
|
172 |
+
nms_pre=1000,
|
173 |
+
max_per_img=1000,
|
174 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
175 |
+
min_bbox_size=0),
|
176 |
+
rcnn=dict(
|
177 |
+
score_thr=0.05,
|
178 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
179 |
+
max_per_img=100)))
|
configs/_base_/models/fast_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='FastRCNN',
|
4 |
+
pretrained='torchvision://resnet50',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
num_outs=5),
|
19 |
+
roi_head=dict(
|
20 |
+
type='StandardRoIHead',
|
21 |
+
bbox_roi_extractor=dict(
|
22 |
+
type='SingleRoIExtractor',
|
23 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
24 |
+
out_channels=256,
|
25 |
+
featmap_strides=[4, 8, 16, 32]),
|
26 |
+
bbox_head=dict(
|
27 |
+
type='Shared2FCBBoxHead',
|
28 |
+
in_channels=256,
|
29 |
+
fc_out_channels=1024,
|
30 |
+
roi_feat_size=7,
|
31 |
+
num_classes=80,
|
32 |
+
bbox_coder=dict(
|
33 |
+
type='DeltaXYWHBBoxCoder',
|
34 |
+
target_means=[0., 0., 0., 0.],
|
35 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
36 |
+
reg_class_agnostic=False,
|
37 |
+
loss_cls=dict(
|
38 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
39 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
40 |
+
# model training and testing settings
|
41 |
+
train_cfg=dict(
|
42 |
+
rcnn=dict(
|
43 |
+
assigner=dict(
|
44 |
+
type='MaxIoUAssigner',
|
45 |
+
pos_iou_thr=0.5,
|
46 |
+
neg_iou_thr=0.5,
|
47 |
+
min_pos_iou=0.5,
|
48 |
+
match_low_quality=False,
|
49 |
+
ignore_iof_thr=-1),
|
50 |
+
sampler=dict(
|
51 |
+
type='RandomSampler',
|
52 |
+
num=512,
|
53 |
+
pos_fraction=0.25,
|
54 |
+
neg_pos_ub=-1,
|
55 |
+
add_gt_as_proposals=True),
|
56 |
+
pos_weight=-1,
|
57 |
+
debug=False)),
|
58 |
+
test_cfg=dict(
|
59 |
+
rcnn=dict(
|
60 |
+
score_thr=0.05,
|
61 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
62 |
+
max_per_img=100)))
|
configs/_base_/models/faster_rcnn_r50_caffe_c4.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='FasterRCNN',
|
5 |
+
pretrained='open-mmlab://detectron2/resnet50_caffe',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNet',
|
8 |
+
depth=50,
|
9 |
+
num_stages=3,
|
10 |
+
strides=(1, 2, 2),
|
11 |
+
dilations=(1, 1, 1),
|
12 |
+
out_indices=(2, ),
|
13 |
+
frozen_stages=1,
|
14 |
+
norm_cfg=norm_cfg,
|
15 |
+
norm_eval=True,
|
16 |
+
style='caffe'),
|
17 |
+
rpn_head=dict(
|
18 |
+
type='RPNHead',
|
19 |
+
in_channels=1024,
|
20 |
+
feat_channels=1024,
|
21 |
+
anchor_generator=dict(
|
22 |
+
type='AnchorGenerator',
|
23 |
+
scales=[2, 4, 8, 16, 32],
|
24 |
+
ratios=[0.5, 1.0, 2.0],
|
25 |
+
strides=[16]),
|
26 |
+
bbox_coder=dict(
|
27 |
+
type='DeltaXYWHBBoxCoder',
|
28 |
+
target_means=[.0, .0, .0, .0],
|
29 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
30 |
+
loss_cls=dict(
|
31 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
32 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
33 |
+
roi_head=dict(
|
34 |
+
type='StandardRoIHead',
|
35 |
+
shared_head=dict(
|
36 |
+
type='ResLayer',
|
37 |
+
depth=50,
|
38 |
+
stage=3,
|
39 |
+
stride=2,
|
40 |
+
dilation=1,
|
41 |
+
style='caffe',
|
42 |
+
norm_cfg=norm_cfg,
|
43 |
+
norm_eval=True),
|
44 |
+
bbox_roi_extractor=dict(
|
45 |
+
type='SingleRoIExtractor',
|
46 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
47 |
+
out_channels=1024,
|
48 |
+
featmap_strides=[16]),
|
49 |
+
bbox_head=dict(
|
50 |
+
type='BBoxHead',
|
51 |
+
with_avg_pool=True,
|
52 |
+
roi_feat_size=7,
|
53 |
+
in_channels=2048,
|
54 |
+
num_classes=80,
|
55 |
+
bbox_coder=dict(
|
56 |
+
type='DeltaXYWHBBoxCoder',
|
57 |
+
target_means=[0., 0., 0., 0.],
|
58 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
59 |
+
reg_class_agnostic=False,
|
60 |
+
loss_cls=dict(
|
61 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
62 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
63 |
+
# model training and testing settings
|
64 |
+
train_cfg=dict(
|
65 |
+
rpn=dict(
|
66 |
+
assigner=dict(
|
67 |
+
type='MaxIoUAssigner',
|
68 |
+
pos_iou_thr=0.7,
|
69 |
+
neg_iou_thr=0.3,
|
70 |
+
min_pos_iou=0.3,
|
71 |
+
match_low_quality=True,
|
72 |
+
ignore_iof_thr=-1),
|
73 |
+
sampler=dict(
|
74 |
+
type='RandomSampler',
|
75 |
+
num=256,
|
76 |
+
pos_fraction=0.5,
|
77 |
+
neg_pos_ub=-1,
|
78 |
+
add_gt_as_proposals=False),
|
79 |
+
allowed_border=0,
|
80 |
+
pos_weight=-1,
|
81 |
+
debug=False),
|
82 |
+
rpn_proposal=dict(
|
83 |
+
nms_pre=12000,
|
84 |
+
max_per_img=2000,
|
85 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
86 |
+
min_bbox_size=0),
|
87 |
+
rcnn=dict(
|
88 |
+
assigner=dict(
|
89 |
+
type='MaxIoUAssigner',
|
90 |
+
pos_iou_thr=0.5,
|
91 |
+
neg_iou_thr=0.5,
|
92 |
+
min_pos_iou=0.5,
|
93 |
+
match_low_quality=False,
|
94 |
+
ignore_iof_thr=-1),
|
95 |
+
sampler=dict(
|
96 |
+
type='RandomSampler',
|
97 |
+
num=512,
|
98 |
+
pos_fraction=0.25,
|
99 |
+
neg_pos_ub=-1,
|
100 |
+
add_gt_as_proposals=True),
|
101 |
+
pos_weight=-1,
|
102 |
+
debug=False)),
|
103 |
+
test_cfg=dict(
|
104 |
+
rpn=dict(
|
105 |
+
nms_pre=6000,
|
106 |
+
max_per_img=1000,
|
107 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
108 |
+
min_bbox_size=0),
|
109 |
+
rcnn=dict(
|
110 |
+
score_thr=0.05,
|
111 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
112 |
+
max_per_img=100)))
|
configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='FasterRCNN',
|
5 |
+
pretrained='open-mmlab://detectron2/resnet50_caffe',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNet',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
strides=(1, 2, 2, 1),
|
11 |
+
dilations=(1, 1, 1, 2),
|
12 |
+
out_indices=(3, ),
|
13 |
+
frozen_stages=1,
|
14 |
+
norm_cfg=norm_cfg,
|
15 |
+
norm_eval=True,
|
16 |
+
style='caffe'),
|
17 |
+
rpn_head=dict(
|
18 |
+
type='RPNHead',
|
19 |
+
in_channels=2048,
|
20 |
+
feat_channels=2048,
|
21 |
+
anchor_generator=dict(
|
22 |
+
type='AnchorGenerator',
|
23 |
+
scales=[2, 4, 8, 16, 32],
|
24 |
+
ratios=[0.5, 1.0, 2.0],
|
25 |
+
strides=[16]),
|
26 |
+
bbox_coder=dict(
|
27 |
+
type='DeltaXYWHBBoxCoder',
|
28 |
+
target_means=[.0, .0, .0, .0],
|
29 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
30 |
+
loss_cls=dict(
|
31 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
32 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
33 |
+
roi_head=dict(
|
34 |
+
type='StandardRoIHead',
|
35 |
+
bbox_roi_extractor=dict(
|
36 |
+
type='SingleRoIExtractor',
|
37 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
38 |
+
out_channels=2048,
|
39 |
+
featmap_strides=[16]),
|
40 |
+
bbox_head=dict(
|
41 |
+
type='Shared2FCBBoxHead',
|
42 |
+
in_channels=2048,
|
43 |
+
fc_out_channels=1024,
|
44 |
+
roi_feat_size=7,
|
45 |
+
num_classes=80,
|
46 |
+
bbox_coder=dict(
|
47 |
+
type='DeltaXYWHBBoxCoder',
|
48 |
+
target_means=[0., 0., 0., 0.],
|
49 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
50 |
+
reg_class_agnostic=False,
|
51 |
+
loss_cls=dict(
|
52 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
53 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
54 |
+
# model training and testing settings
|
55 |
+
train_cfg=dict(
|
56 |
+
rpn=dict(
|
57 |
+
assigner=dict(
|
58 |
+
type='MaxIoUAssigner',
|
59 |
+
pos_iou_thr=0.7,
|
60 |
+
neg_iou_thr=0.3,
|
61 |
+
min_pos_iou=0.3,
|
62 |
+
match_low_quality=True,
|
63 |
+
ignore_iof_thr=-1),
|
64 |
+
sampler=dict(
|
65 |
+
type='RandomSampler',
|
66 |
+
num=256,
|
67 |
+
pos_fraction=0.5,
|
68 |
+
neg_pos_ub=-1,
|
69 |
+
add_gt_as_proposals=False),
|
70 |
+
allowed_border=0,
|
71 |
+
pos_weight=-1,
|
72 |
+
debug=False),
|
73 |
+
rpn_proposal=dict(
|
74 |
+
nms_pre=12000,
|
75 |
+
max_per_img=2000,
|
76 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
77 |
+
min_bbox_size=0),
|
78 |
+
rcnn=dict(
|
79 |
+
assigner=dict(
|
80 |
+
type='MaxIoUAssigner',
|
81 |
+
pos_iou_thr=0.5,
|
82 |
+
neg_iou_thr=0.5,
|
83 |
+
min_pos_iou=0.5,
|
84 |
+
match_low_quality=False,
|
85 |
+
ignore_iof_thr=-1),
|
86 |
+
sampler=dict(
|
87 |
+
type='RandomSampler',
|
88 |
+
num=512,
|
89 |
+
pos_fraction=0.25,
|
90 |
+
neg_pos_ub=-1,
|
91 |
+
add_gt_as_proposals=True),
|
92 |
+
pos_weight=-1,
|
93 |
+
debug=False)),
|
94 |
+
test_cfg=dict(
|
95 |
+
rpn=dict(
|
96 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
97 |
+
nms_pre=6000,
|
98 |
+
max_per_img=1000,
|
99 |
+
min_bbox_size=0),
|
100 |
+
rcnn=dict(
|
101 |
+
score_thr=0.05,
|
102 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
103 |
+
max_per_img=100)))
|
configs/_base_/models/faster_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='FasterRCNN',
|
3 |
+
pretrained='torchvision://resnet50',
|
4 |
+
backbone=dict(
|
5 |
+
type='ResNet',
|
6 |
+
depth=50,
|
7 |
+
num_stages=4,
|
8 |
+
out_indices=(0, 1, 2, 3),
|
9 |
+
frozen_stages=1,
|
10 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
11 |
+
norm_eval=True,
|
12 |
+
style='pytorch'),
|
13 |
+
neck=dict(
|
14 |
+
type='FPN',
|
15 |
+
in_channels=[256, 512, 1024, 2048],
|
16 |
+
out_channels=256,
|
17 |
+
num_outs=5),
|
18 |
+
rpn_head=dict(
|
19 |
+
type='RPNHead',
|
20 |
+
in_channels=256,
|
21 |
+
feat_channels=256,
|
22 |
+
anchor_generator=dict(
|
23 |
+
type='AnchorGenerator',
|
24 |
+
scales=[8],
|
25 |
+
ratios=[0.5, 1.0, 2.0],
|
26 |
+
strides=[4, 8, 16, 32, 64]),
|
27 |
+
bbox_coder=dict(
|
28 |
+
type='DeltaXYWHBBoxCoder',
|
29 |
+
target_means=[.0, .0, .0, .0],
|
30 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
31 |
+
loss_cls=dict(
|
32 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
33 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
34 |
+
roi_head=dict(
|
35 |
+
type='StandardRoIHead',
|
36 |
+
bbox_roi_extractor=dict(
|
37 |
+
type='SingleRoIExtractor',
|
38 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
39 |
+
out_channels=256,
|
40 |
+
featmap_strides=[4, 8, 16, 32]),
|
41 |
+
bbox_head=dict(
|
42 |
+
type='Shared2FCBBoxHead',
|
43 |
+
in_channels=256,
|
44 |
+
fc_out_channels=1024,
|
45 |
+
roi_feat_size=7,
|
46 |
+
num_classes=80,
|
47 |
+
bbox_coder=dict(
|
48 |
+
type='DeltaXYWHBBoxCoder',
|
49 |
+
target_means=[0., 0., 0., 0.],
|
50 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
51 |
+
reg_class_agnostic=False,
|
52 |
+
loss_cls=dict(
|
53 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
54 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
55 |
+
# model training and testing settings
|
56 |
+
train_cfg=dict(
|
57 |
+
rpn=dict(
|
58 |
+
assigner=dict(
|
59 |
+
type='MaxIoUAssigner',
|
60 |
+
pos_iou_thr=0.7,
|
61 |
+
neg_iou_thr=0.3,
|
62 |
+
min_pos_iou=0.3,
|
63 |
+
match_low_quality=True,
|
64 |
+
ignore_iof_thr=-1),
|
65 |
+
sampler=dict(
|
66 |
+
type='RandomSampler',
|
67 |
+
num=256,
|
68 |
+
pos_fraction=0.5,
|
69 |
+
neg_pos_ub=-1,
|
70 |
+
add_gt_as_proposals=False),
|
71 |
+
allowed_border=-1,
|
72 |
+
pos_weight=-1,
|
73 |
+
debug=False),
|
74 |
+
rpn_proposal=dict(
|
75 |
+
nms_pre=2000,
|
76 |
+
max_per_img=1000,
|
77 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
78 |
+
min_bbox_size=0),
|
79 |
+
rcnn=dict(
|
80 |
+
assigner=dict(
|
81 |
+
type='MaxIoUAssigner',
|
82 |
+
pos_iou_thr=0.5,
|
83 |
+
neg_iou_thr=0.5,
|
84 |
+
min_pos_iou=0.5,
|
85 |
+
match_low_quality=False,
|
86 |
+
ignore_iof_thr=-1),
|
87 |
+
sampler=dict(
|
88 |
+
type='RandomSampler',
|
89 |
+
num=512,
|
90 |
+
pos_fraction=0.25,
|
91 |
+
neg_pos_ub=-1,
|
92 |
+
add_gt_as_proposals=True),
|
93 |
+
pos_weight=-1,
|
94 |
+
debug=False)),
|
95 |
+
test_cfg=dict(
|
96 |
+
rpn=dict(
|
97 |
+
nms_pre=1000,
|
98 |
+
max_per_img=1000,
|
99 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
100 |
+
min_bbox_size=0),
|
101 |
+
rcnn=dict(
|
102 |
+
score_thr=0.05,
|
103 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
104 |
+
max_per_img=100)
|
105 |
+
# soft-nms is also supported for rcnn testing
|
106 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
107 |
+
))
|
configs/_base_/models/mask_rcnn_r50_caffe_c4.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='MaskRCNN',
|
5 |
+
pretrained='open-mmlab://detectron2/resnet50_caffe',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNet',
|
8 |
+
depth=50,
|
9 |
+
num_stages=3,
|
10 |
+
strides=(1, 2, 2),
|
11 |
+
dilations=(1, 1, 1),
|
12 |
+
out_indices=(2, ),
|
13 |
+
frozen_stages=1,
|
14 |
+
norm_cfg=norm_cfg,
|
15 |
+
norm_eval=True,
|
16 |
+
style='caffe'),
|
17 |
+
rpn_head=dict(
|
18 |
+
type='RPNHead',
|
19 |
+
in_channels=1024,
|
20 |
+
feat_channels=1024,
|
21 |
+
anchor_generator=dict(
|
22 |
+
type='AnchorGenerator',
|
23 |
+
scales=[2, 4, 8, 16, 32],
|
24 |
+
ratios=[0.5, 1.0, 2.0],
|
25 |
+
strides=[16]),
|
26 |
+
bbox_coder=dict(
|
27 |
+
type='DeltaXYWHBBoxCoder',
|
28 |
+
target_means=[.0, .0, .0, .0],
|
29 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
30 |
+
loss_cls=dict(
|
31 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
32 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
33 |
+
roi_head=dict(
|
34 |
+
type='StandardRoIHead',
|
35 |
+
shared_head=dict(
|
36 |
+
type='ResLayer',
|
37 |
+
depth=50,
|
38 |
+
stage=3,
|
39 |
+
stride=2,
|
40 |
+
dilation=1,
|
41 |
+
style='caffe',
|
42 |
+
norm_cfg=norm_cfg,
|
43 |
+
norm_eval=True),
|
44 |
+
bbox_roi_extractor=dict(
|
45 |
+
type='SingleRoIExtractor',
|
46 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
47 |
+
out_channels=1024,
|
48 |
+
featmap_strides=[16]),
|
49 |
+
bbox_head=dict(
|
50 |
+
type='BBoxHead',
|
51 |
+
with_avg_pool=True,
|
52 |
+
roi_feat_size=7,
|
53 |
+
in_channels=2048,
|
54 |
+
num_classes=80,
|
55 |
+
bbox_coder=dict(
|
56 |
+
type='DeltaXYWHBBoxCoder',
|
57 |
+
target_means=[0., 0., 0., 0.],
|
58 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
59 |
+
reg_class_agnostic=False,
|
60 |
+
loss_cls=dict(
|
61 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
62 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
63 |
+
mask_roi_extractor=None,
|
64 |
+
mask_head=dict(
|
65 |
+
type='FCNMaskHead',
|
66 |
+
num_convs=0,
|
67 |
+
in_channels=2048,
|
68 |
+
conv_out_channels=256,
|
69 |
+
num_classes=80,
|
70 |
+
loss_mask=dict(
|
71 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
72 |
+
# model training and testing settings
|
73 |
+
train_cfg=dict(
|
74 |
+
rpn=dict(
|
75 |
+
assigner=dict(
|
76 |
+
type='MaxIoUAssigner',
|
77 |
+
pos_iou_thr=0.7,
|
78 |
+
neg_iou_thr=0.3,
|
79 |
+
min_pos_iou=0.3,
|
80 |
+
match_low_quality=True,
|
81 |
+
ignore_iof_thr=-1),
|
82 |
+
sampler=dict(
|
83 |
+
type='RandomSampler',
|
84 |
+
num=256,
|
85 |
+
pos_fraction=0.5,
|
86 |
+
neg_pos_ub=-1,
|
87 |
+
add_gt_as_proposals=False),
|
88 |
+
allowed_border=0,
|
89 |
+
pos_weight=-1,
|
90 |
+
debug=False),
|
91 |
+
rpn_proposal=dict(
|
92 |
+
nms_pre=12000,
|
93 |
+
max_per_img=2000,
|
94 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
95 |
+
min_bbox_size=0),
|
96 |
+
rcnn=dict(
|
97 |
+
assigner=dict(
|
98 |
+
type='MaxIoUAssigner',
|
99 |
+
pos_iou_thr=0.5,
|
100 |
+
neg_iou_thr=0.5,
|
101 |
+
min_pos_iou=0.5,
|
102 |
+
match_low_quality=False,
|
103 |
+
ignore_iof_thr=-1),
|
104 |
+
sampler=dict(
|
105 |
+
type='RandomSampler',
|
106 |
+
num=512,
|
107 |
+
pos_fraction=0.25,
|
108 |
+
neg_pos_ub=-1,
|
109 |
+
add_gt_as_proposals=True),
|
110 |
+
mask_size=14,
|
111 |
+
pos_weight=-1,
|
112 |
+
debug=False)),
|
113 |
+
test_cfg=dict(
|
114 |
+
rpn=dict(
|
115 |
+
nms_pre=6000,
|
116 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
117 |
+
max_per_img=1000,
|
118 |
+
min_bbox_size=0),
|
119 |
+
rcnn=dict(
|
120 |
+
score_thr=0.05,
|
121 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
122 |
+
max_per_img=100,
|
123 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/mask_rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='MaskRCNN',
|
4 |
+
pretrained='torchvision://resnet50',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
num_outs=5),
|
19 |
+
rpn_head=dict(
|
20 |
+
type='RPNHead',
|
21 |
+
in_channels=256,
|
22 |
+
feat_channels=256,
|
23 |
+
anchor_generator=dict(
|
24 |
+
type='AnchorGenerator',
|
25 |
+
scales=[8],
|
26 |
+
ratios=[0.5, 1.0, 2.0],
|
27 |
+
strides=[4, 8, 16, 32, 64]),
|
28 |
+
bbox_coder=dict(
|
29 |
+
type='DeltaXYWHBBoxCoder',
|
30 |
+
target_means=[.0, .0, .0, .0],
|
31 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
32 |
+
loss_cls=dict(
|
33 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
34 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
35 |
+
roi_head=dict(
|
36 |
+
type='StandardRoIHead',
|
37 |
+
bbox_roi_extractor=dict(
|
38 |
+
type='SingleRoIExtractor',
|
39 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
40 |
+
out_channels=256,
|
41 |
+
featmap_strides=[4, 8, 16, 32]),
|
42 |
+
bbox_head=dict(
|
43 |
+
type='Shared2FCBBoxHead',
|
44 |
+
in_channels=256,
|
45 |
+
fc_out_channels=1024,
|
46 |
+
roi_feat_size=7,
|
47 |
+
num_classes=80,
|
48 |
+
bbox_coder=dict(
|
49 |
+
type='DeltaXYWHBBoxCoder',
|
50 |
+
target_means=[0., 0., 0., 0.],
|
51 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
52 |
+
reg_class_agnostic=False,
|
53 |
+
loss_cls=dict(
|
54 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
55 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
56 |
+
mask_roi_extractor=dict(
|
57 |
+
type='SingleRoIExtractor',
|
58 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
59 |
+
out_channels=256,
|
60 |
+
featmap_strides=[4, 8, 16, 32]),
|
61 |
+
mask_head=dict(
|
62 |
+
type='FCNMaskHead',
|
63 |
+
num_convs=4,
|
64 |
+
in_channels=256,
|
65 |
+
conv_out_channels=256,
|
66 |
+
num_classes=80,
|
67 |
+
loss_mask=dict(
|
68 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
69 |
+
# model training and testing settings
|
70 |
+
train_cfg=dict(
|
71 |
+
rpn=dict(
|
72 |
+
assigner=dict(
|
73 |
+
type='MaxIoUAssigner',
|
74 |
+
pos_iou_thr=0.7,
|
75 |
+
neg_iou_thr=0.3,
|
76 |
+
min_pos_iou=0.3,
|
77 |
+
match_low_quality=True,
|
78 |
+
ignore_iof_thr=-1),
|
79 |
+
sampler=dict(
|
80 |
+
type='RandomSampler',
|
81 |
+
num=256,
|
82 |
+
pos_fraction=0.5,
|
83 |
+
neg_pos_ub=-1,
|
84 |
+
add_gt_as_proposals=False),
|
85 |
+
allowed_border=-1,
|
86 |
+
pos_weight=-1,
|
87 |
+
debug=False),
|
88 |
+
rpn_proposal=dict(
|
89 |
+
nms_pre=2000,
|
90 |
+
max_per_img=1000,
|
91 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
92 |
+
min_bbox_size=0),
|
93 |
+
rcnn=dict(
|
94 |
+
assigner=dict(
|
95 |
+
type='MaxIoUAssigner',
|
96 |
+
pos_iou_thr=0.5,
|
97 |
+
neg_iou_thr=0.5,
|
98 |
+
min_pos_iou=0.5,
|
99 |
+
match_low_quality=True,
|
100 |
+
ignore_iof_thr=-1),
|
101 |
+
sampler=dict(
|
102 |
+
type='RandomSampler',
|
103 |
+
num=512,
|
104 |
+
pos_fraction=0.25,
|
105 |
+
neg_pos_ub=-1,
|
106 |
+
add_gt_as_proposals=True),
|
107 |
+
mask_size=28,
|
108 |
+
pos_weight=-1,
|
109 |
+
debug=False)),
|
110 |
+
test_cfg=dict(
|
111 |
+
rpn=dict(
|
112 |
+
nms_pre=1000,
|
113 |
+
max_per_img=1000,
|
114 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
115 |
+
min_bbox_size=0),
|
116 |
+
rcnn=dict(
|
117 |
+
score_thr=0.05,
|
118 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
119 |
+
max_per_img=100,
|
120 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/mask_rcnn_swin_fpn.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='MaskRCNN',
|
4 |
+
pretrained=None,
|
5 |
+
backbone=dict(
|
6 |
+
type='SwinTransformer',
|
7 |
+
embed_dim=96,
|
8 |
+
depths=[2, 2, 6, 2],
|
9 |
+
num_heads=[3, 6, 12, 24],
|
10 |
+
window_size=7,
|
11 |
+
mlp_ratio=4.,
|
12 |
+
qkv_bias=True,
|
13 |
+
qk_scale=None,
|
14 |
+
drop_rate=0.,
|
15 |
+
attn_drop_rate=0.,
|
16 |
+
drop_path_rate=0.2,
|
17 |
+
ape=False,
|
18 |
+
patch_norm=True,
|
19 |
+
out_indices=(0, 1, 2, 3),
|
20 |
+
use_checkpoint=False),
|
21 |
+
neck=dict(
|
22 |
+
type='FPN',
|
23 |
+
in_channels=[96, 192, 384, 768],
|
24 |
+
out_channels=256,
|
25 |
+
num_outs=5),
|
26 |
+
rpn_head=dict(
|
27 |
+
type='RPNHead',
|
28 |
+
in_channels=256,
|
29 |
+
feat_channels=256,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
scales=[8],
|
33 |
+
ratios=[0.5, 1.0, 2.0],
|
34 |
+
strides=[4, 8, 16, 32, 64]),
|
35 |
+
bbox_coder=dict(
|
36 |
+
type='DeltaXYWHBBoxCoder',
|
37 |
+
target_means=[.0, .0, .0, .0],
|
38 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
39 |
+
loss_cls=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
41 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
42 |
+
roi_head=dict(
|
43 |
+
type='StandardRoIHead',
|
44 |
+
bbox_roi_extractor=dict(
|
45 |
+
type='SingleRoIExtractor',
|
46 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
47 |
+
out_channels=256,
|
48 |
+
featmap_strides=[4, 8, 16, 32]),
|
49 |
+
bbox_head=dict(
|
50 |
+
type='Shared2FCBBoxHead',
|
51 |
+
in_channels=256,
|
52 |
+
fc_out_channels=1024,
|
53 |
+
roi_feat_size=7,
|
54 |
+
num_classes=80,
|
55 |
+
bbox_coder=dict(
|
56 |
+
type='DeltaXYWHBBoxCoder',
|
57 |
+
target_means=[0., 0., 0., 0.],
|
58 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
59 |
+
reg_class_agnostic=False,
|
60 |
+
loss_cls=dict(
|
61 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
62 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
63 |
+
mask_roi_extractor=dict(
|
64 |
+
type='SingleRoIExtractor',
|
65 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
66 |
+
out_channels=256,
|
67 |
+
featmap_strides=[4, 8, 16, 32]),
|
68 |
+
mask_head=dict(
|
69 |
+
type='FCNMaskHead',
|
70 |
+
num_convs=4,
|
71 |
+
in_channels=256,
|
72 |
+
conv_out_channels=256,
|
73 |
+
num_classes=80,
|
74 |
+
loss_mask=dict(
|
75 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
76 |
+
# model training and testing settings
|
77 |
+
train_cfg=dict(
|
78 |
+
rpn=dict(
|
79 |
+
assigner=dict(
|
80 |
+
type='MaxIoUAssigner',
|
81 |
+
pos_iou_thr=0.7,
|
82 |
+
neg_iou_thr=0.3,
|
83 |
+
min_pos_iou=0.3,
|
84 |
+
match_low_quality=True,
|
85 |
+
ignore_iof_thr=-1),
|
86 |
+
sampler=dict(
|
87 |
+
type='RandomSampler',
|
88 |
+
num=256,
|
89 |
+
pos_fraction=0.5,
|
90 |
+
neg_pos_ub=-1,
|
91 |
+
add_gt_as_proposals=False),
|
92 |
+
allowed_border=-1,
|
93 |
+
pos_weight=-1,
|
94 |
+
debug=False),
|
95 |
+
rpn_proposal=dict(
|
96 |
+
nms_pre=2000,
|
97 |
+
max_per_img=1000,
|
98 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
99 |
+
min_bbox_size=0),
|
100 |
+
rcnn=dict(
|
101 |
+
assigner=dict(
|
102 |
+
type='MaxIoUAssigner',
|
103 |
+
pos_iou_thr=0.5,
|
104 |
+
neg_iou_thr=0.5,
|
105 |
+
min_pos_iou=0.5,
|
106 |
+
match_low_quality=True,
|
107 |
+
ignore_iof_thr=-1),
|
108 |
+
sampler=dict(
|
109 |
+
type='RandomSampler',
|
110 |
+
num=512,
|
111 |
+
pos_fraction=0.25,
|
112 |
+
neg_pos_ub=-1,
|
113 |
+
add_gt_as_proposals=True),
|
114 |
+
mask_size=28,
|
115 |
+
pos_weight=-1,
|
116 |
+
debug=False)),
|
117 |
+
test_cfg=dict(
|
118 |
+
rpn=dict(
|
119 |
+
nms_pre=1000,
|
120 |
+
max_per_img=1000,
|
121 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
122 |
+
min_bbox_size=0),
|
123 |
+
rcnn=dict(
|
124 |
+
score_thr=0.05,
|
125 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
126 |
+
max_per_img=100,
|
127 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/mask_rcnn_uniformer_fpn.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='MaskRCNN',
|
4 |
+
pretrained=None,
|
5 |
+
backbone=dict(
|
6 |
+
type='UniFormer',
|
7 |
+
embed_dim=[64, 128, 320, 512],
|
8 |
+
layers=[3, 4, 8, 3],
|
9 |
+
head_dim=64,
|
10 |
+
mlp_ratio=4.,
|
11 |
+
qkv_bias=True,
|
12 |
+
drop_rate=0.,
|
13 |
+
attn_drop_rate=0.,
|
14 |
+
drop_path_rate=0.2),
|
15 |
+
neck=dict(
|
16 |
+
type='FPN',
|
17 |
+
in_channels=[64, 128, 320, 512],
|
18 |
+
out_channels=256,
|
19 |
+
num_outs=5),
|
20 |
+
rpn_head=dict(
|
21 |
+
type='RPNHead',
|
22 |
+
in_channels=256,
|
23 |
+
feat_channels=256,
|
24 |
+
anchor_generator=dict(
|
25 |
+
type='AnchorGenerator',
|
26 |
+
scales=[8],
|
27 |
+
ratios=[0.5, 1.0, 2.0],
|
28 |
+
strides=[4, 8, 16, 32, 64]),
|
29 |
+
bbox_coder=dict(
|
30 |
+
type='DeltaXYWHBBoxCoder',
|
31 |
+
target_means=[.0, .0, .0, .0],
|
32 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
33 |
+
loss_cls=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
35 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
36 |
+
roi_head=dict(
|
37 |
+
type='StandardRoIHead',
|
38 |
+
bbox_roi_extractor=dict(
|
39 |
+
type='SingleRoIExtractor',
|
40 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
41 |
+
out_channels=256,
|
42 |
+
featmap_strides=[4, 8, 16, 32]),
|
43 |
+
bbox_head=dict(
|
44 |
+
type='Shared2FCBBoxHead',
|
45 |
+
in_channels=256,
|
46 |
+
fc_out_channels=1024,
|
47 |
+
roi_feat_size=7,
|
48 |
+
num_classes=80,
|
49 |
+
bbox_coder=dict(
|
50 |
+
type='DeltaXYWHBBoxCoder',
|
51 |
+
target_means=[0., 0., 0., 0.],
|
52 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
53 |
+
reg_class_agnostic=False,
|
54 |
+
loss_cls=dict(
|
55 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
56 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
57 |
+
mask_roi_extractor=dict(
|
58 |
+
type='SingleRoIExtractor',
|
59 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
60 |
+
out_channels=256,
|
61 |
+
featmap_strides=[4, 8, 16, 32]),
|
62 |
+
mask_head=dict(
|
63 |
+
type='FCNMaskHead',
|
64 |
+
num_convs=4,
|
65 |
+
in_channels=256,
|
66 |
+
conv_out_channels=256,
|
67 |
+
num_classes=80,
|
68 |
+
loss_mask=dict(
|
69 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
70 |
+
# model training and testing settings
|
71 |
+
train_cfg=dict(
|
72 |
+
rpn=dict(
|
73 |
+
assigner=dict(
|
74 |
+
type='MaxIoUAssigner',
|
75 |
+
pos_iou_thr=0.7,
|
76 |
+
neg_iou_thr=0.3,
|
77 |
+
min_pos_iou=0.3,
|
78 |
+
match_low_quality=True,
|
79 |
+
ignore_iof_thr=-1),
|
80 |
+
sampler=dict(
|
81 |
+
type='RandomSampler',
|
82 |
+
num=256,
|
83 |
+
pos_fraction=0.5,
|
84 |
+
neg_pos_ub=-1,
|
85 |
+
add_gt_as_proposals=False),
|
86 |
+
allowed_border=-1,
|
87 |
+
pos_weight=-1,
|
88 |
+
debug=False),
|
89 |
+
rpn_proposal=dict(
|
90 |
+
nms_pre=2000,
|
91 |
+
max_per_img=1000,
|
92 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
93 |
+
min_bbox_size=0),
|
94 |
+
rcnn=dict(
|
95 |
+
assigner=dict(
|
96 |
+
type='MaxIoUAssigner',
|
97 |
+
pos_iou_thr=0.5,
|
98 |
+
neg_iou_thr=0.5,
|
99 |
+
min_pos_iou=0.5,
|
100 |
+
match_low_quality=True,
|
101 |
+
ignore_iof_thr=-1),
|
102 |
+
sampler=dict(
|
103 |
+
type='RandomSampler',
|
104 |
+
num=512,
|
105 |
+
pos_fraction=0.25,
|
106 |
+
neg_pos_ub=-1,
|
107 |
+
add_gt_as_proposals=True),
|
108 |
+
mask_size=28,
|
109 |
+
pos_weight=-1,
|
110 |
+
debug=False)),
|
111 |
+
test_cfg=dict(
|
112 |
+
rpn=dict(
|
113 |
+
nms_pre=1000,
|
114 |
+
max_per_img=1000,
|
115 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
116 |
+
min_bbox_size=0),
|
117 |
+
rcnn=dict(
|
118 |
+
score_thr=0.05,
|
119 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
120 |
+
max_per_img=100,
|
121 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/retinanet_r50_fpn.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='RetinaNet',
|
4 |
+
pretrained='torchvision://resnet50',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=4,
|
9 |
+
out_indices=(0, 1, 2, 3),
|
10 |
+
frozen_stages=1,
|
11 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
12 |
+
norm_eval=True,
|
13 |
+
style='pytorch'),
|
14 |
+
neck=dict(
|
15 |
+
type='FPN',
|
16 |
+
in_channels=[256, 512, 1024, 2048],
|
17 |
+
out_channels=256,
|
18 |
+
start_level=1,
|
19 |
+
add_extra_convs='on_input',
|
20 |
+
num_outs=5),
|
21 |
+
bbox_head=dict(
|
22 |
+
type='RetinaHead',
|
23 |
+
num_classes=80,
|
24 |
+
in_channels=256,
|
25 |
+
stacked_convs=4,
|
26 |
+
feat_channels=256,
|
27 |
+
anchor_generator=dict(
|
28 |
+
type='AnchorGenerator',
|
29 |
+
octave_base_scale=4,
|
30 |
+
scales_per_octave=3,
|
31 |
+
ratios=[0.5, 1.0, 2.0],
|
32 |
+
strides=[8, 16, 32, 64, 128]),
|
33 |
+
bbox_coder=dict(
|
34 |
+
type='DeltaXYWHBBoxCoder',
|
35 |
+
target_means=[.0, .0, .0, .0],
|
36 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
37 |
+
loss_cls=dict(
|
38 |
+
type='FocalLoss',
|
39 |
+
use_sigmoid=True,
|
40 |
+
gamma=2.0,
|
41 |
+
alpha=0.25,
|
42 |
+
loss_weight=1.0),
|
43 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
44 |
+
# training and testing settings
|
45 |
+
train_cfg=dict(
|
46 |
+
assigner=dict(
|
47 |
+
type='MaxIoUAssigner',
|
48 |
+
pos_iou_thr=0.5,
|
49 |
+
neg_iou_thr=0.4,
|
50 |
+
min_pos_iou=0,
|
51 |
+
ignore_iof_thr=-1),
|
52 |
+
allowed_border=-1,
|
53 |
+
pos_weight=-1,
|
54 |
+
debug=False),
|
55 |
+
test_cfg=dict(
|
56 |
+
nms_pre=1000,
|
57 |
+
min_bbox_size=0,
|
58 |
+
score_thr=0.05,
|
59 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
60 |
+
max_per_img=100))
|
configs/_base_/models/rpn_r50_caffe_c4.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='RPN',
|
4 |
+
pretrained='open-mmlab://detectron2/resnet50_caffe',
|
5 |
+
backbone=dict(
|
6 |
+
type='ResNet',
|
7 |
+
depth=50,
|
8 |
+
num_stages=3,
|
9 |
+
strides=(1, 2, 2),
|
10 |
+
dilations=(1, 1, 1),
|
11 |
+
out_indices=(2, ),
|
12 |
+
frozen_stages=1,
|
13 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
14 |
+
norm_eval=True,
|
15 |
+
style='caffe'),
|
16 |
+
neck=None,
|
17 |
+
rpn_head=dict(
|
18 |
+
type='RPNHead',
|
19 |
+
in_channels=1024,
|
20 |
+
feat_channels=1024,
|
21 |
+
anchor_generator=dict(
|
22 |
+
type='AnchorGenerator',
|
23 |
+
scales=[2, 4, 8, 16, 32],
|
24 |
+
ratios=[0.5, 1.0, 2.0],
|
25 |
+
strides=[16]),
|
26 |
+
bbox_coder=dict(
|
27 |
+
type='DeltaXYWHBBoxCoder',
|
28 |
+
target_means=[.0, .0, .0, .0],
|
29 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
30 |
+
loss_cls=dict(
|
31 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
32 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
33 |
+
# model training and testing settings
|
34 |
+
train_cfg=dict(
|
35 |
+
rpn=dict(
|
36 |
+
assigner=dict(
|
37 |
+
type='MaxIoUAssigner',
|
38 |
+
pos_iou_thr=0.7,
|
39 |
+
neg_iou_thr=0.3,
|
40 |
+
min_pos_iou=0.3,
|
41 |
+
ignore_iof_thr=-1),
|
42 |
+
sampler=dict(
|
43 |
+
type='RandomSampler',
|
44 |
+
num=256,
|
45 |
+
pos_fraction=0.5,
|
46 |
+
neg_pos_ub=-1,
|
47 |
+
add_gt_as_proposals=False),
|
48 |
+
allowed_border=0,
|
49 |
+
pos_weight=-1,
|
50 |
+
debug=False)),
|
51 |
+
test_cfg=dict(
|
52 |
+
rpn=dict(
|
53 |
+
nms_pre=12000,
|
54 |
+
max_per_img=2000,
|
55 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
56 |
+
min_bbox_size=0)))
|
configs/_base_/models/rpn_r50_fpn.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
|
3 |
+
model = dict(
|
4 |
+
type='RPN',
|
5 |
+
pretrained='torchvision://resnet50',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNet',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
frozen_stages=1,
|
12 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
13 |
+
norm_eval=True,
|
14 |
+
style='pytorch'),
|
15 |
+
neck=dict(
|
16 |
+
type='FPN',
|
17 |
+
in_channels=[256, 512, 1024, 2048],
|
18 |
+
out_channels=256,
|
19 |
+
num_outs=5),
|
20 |
+
rpn_head=dict(
|
21 |
+
type='RPNHead',
|
22 |
+
in_channels=256,
|
23 |
+
feat_channels=256,
|
24 |
+
anchor_generator=dict(
|
25 |
+
type='AnchorGenerator',
|
26 |
+
scales=[8],
|
27 |
+
ratios=[0.5, 1.0, 2.0],
|
28 |
+
strides=[4, 8, 16, 32, 64]),
|
29 |
+
bbox_coder=dict(
|
30 |
+
type='DeltaXYWHBBoxCoder',
|
31 |
+
target_means=[.0, .0, .0, .0],
|
32 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
33 |
+
loss_cls=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
35 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
36 |
+
# model training and testing settings
|
37 |
+
train_cfg=dict(
|
38 |
+
rpn=dict(
|
39 |
+
assigner=dict(
|
40 |
+
type='MaxIoUAssigner',
|
41 |
+
pos_iou_thr=0.7,
|
42 |
+
neg_iou_thr=0.3,
|
43 |
+
min_pos_iou=0.3,
|
44 |
+
ignore_iof_thr=-1),
|
45 |
+
sampler=dict(
|
46 |
+
type='RandomSampler',
|
47 |
+
num=256,
|
48 |
+
pos_fraction=0.5,
|
49 |
+
neg_pos_ub=-1,
|
50 |
+
add_gt_as_proposals=False),
|
51 |
+
allowed_border=0,
|
52 |
+
pos_weight=-1,
|
53 |
+
debug=False)),
|
54 |
+
test_cfg=dict(
|
55 |
+
rpn=dict(
|
56 |
+
nms_pre=2000,
|
57 |
+
max_per_img=1000,
|
58 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
59 |
+
min_bbox_size=0)))
|
configs/_base_/models/ssd300.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
input_size = 300
|
3 |
+
model = dict(
|
4 |
+
type='SingleStageDetector',
|
5 |
+
pretrained='open-mmlab://vgg16_caffe',
|
6 |
+
backbone=dict(
|
7 |
+
type='SSDVGG',
|
8 |
+
input_size=input_size,
|
9 |
+
depth=16,
|
10 |
+
with_last_pool=False,
|
11 |
+
ceil_mode=True,
|
12 |
+
out_indices=(3, 4),
|
13 |
+
out_feature_indices=(22, 34),
|
14 |
+
l2_norm_scale=20),
|
15 |
+
neck=None,
|
16 |
+
bbox_head=dict(
|
17 |
+
type='SSDHead',
|
18 |
+
in_channels=(512, 1024, 512, 256, 256, 256),
|
19 |
+
num_classes=80,
|
20 |
+
anchor_generator=dict(
|
21 |
+
type='SSDAnchorGenerator',
|
22 |
+
scale_major=False,
|
23 |
+
input_size=input_size,
|
24 |
+
basesize_ratio_range=(0.15, 0.9),
|
25 |
+
strides=[8, 16, 32, 64, 100, 300],
|
26 |
+
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
|
27 |
+
bbox_coder=dict(
|
28 |
+
type='DeltaXYWHBBoxCoder',
|
29 |
+
target_means=[.0, .0, .0, .0],
|
30 |
+
target_stds=[0.1, 0.1, 0.2, 0.2])),
|
31 |
+
train_cfg=dict(
|
32 |
+
assigner=dict(
|
33 |
+
type='MaxIoUAssigner',
|
34 |
+
pos_iou_thr=0.5,
|
35 |
+
neg_iou_thr=0.5,
|
36 |
+
min_pos_iou=0.,
|
37 |
+
ignore_iof_thr=-1,
|
38 |
+
gt_max_assign_all=False),
|
39 |
+
smoothl1_beta=1.,
|
40 |
+
allowed_border=-1,
|
41 |
+
pos_weight=-1,
|
42 |
+
neg_pos_ratio=3,
|
43 |
+
debug=False),
|
44 |
+
test_cfg=dict(
|
45 |
+
nms_pre=1000,
|
46 |
+
nms=dict(type='nms', iou_threshold=0.45),
|
47 |
+
min_bbox_size=0,
|
48 |
+
score_thr=0.02,
|
49 |
+
max_per_img=200))
|
50 |
+
cudnn_benchmark = True
|
configs/_base_/schedules/schedule_1x.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
3 |
+
optimizer_config = dict(grad_clip=None)
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(
|
6 |
+
policy='step',
|
7 |
+
warmup='linear',
|
8 |
+
warmup_iters=500,
|
9 |
+
warmup_ratio=0.001,
|
10 |
+
step=[8, 11])
|
11 |
+
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
configs/_base_/schedules/schedule_20e.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
3 |
+
optimizer_config = dict(grad_clip=None)
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(
|
6 |
+
policy='step',
|
7 |
+
warmup='linear',
|
8 |
+
warmup_iters=500,
|
9 |
+
warmup_ratio=0.001,
|
10 |
+
step=[16, 19])
|
11 |
+
runner = dict(type='EpochBasedRunner', max_epochs=20)
|
configs/_base_/schedules/schedule_2x.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# optimizer
|
2 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
3 |
+
optimizer_config = dict(grad_clip=None)
|
4 |
+
# learning policy
|
5 |
+
lr_config = dict(
|
6 |
+
policy='step',
|
7 |
+
warmup='linear',
|
8 |
+
warmup_iters=500,
|
9 |
+
warmup_ratio=0.001,
|
10 |
+
step=[16, 22])
|
11 |
+
runner = dict(type='EpochBasedRunner', max_epochs=24)
|
configs/albu_example/README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Albu Example
|
2 |
+
|
3 |
+
[OTHERS]
|
4 |
+
|
5 |
+
```
|
6 |
+
@article{2018arXiv180906839B,
|
7 |
+
author = {A. Buslaev, A. Parinov, E. Khvedchenya, V.~I. Iglovikov and A.~A. Kalinin},
|
8 |
+
title = "{Albumentations: fast and flexible image augmentations}",
|
9 |
+
journal = {ArXiv e-prints},
|
10 |
+
eprint = {1809.06839},
|
11 |
+
year = 2018
|
12 |
+
}
|
13 |
+
```
|
14 |
+
|
15 |
+
## Results and Models
|
16 |
+
|
17 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|
18 |
+
|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
|
19 |
+
| R-50 | pytorch | 1x | 4.4 | 16.6 | 38.0 | 34.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208_225520.log.json) |
|
configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
img_norm_cfg = dict(
|
3 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
4 |
+
albu_train_transforms = [
|
5 |
+
dict(
|
6 |
+
type='ShiftScaleRotate',
|
7 |
+
shift_limit=0.0625,
|
8 |
+
scale_limit=0.0,
|
9 |
+
rotate_limit=0,
|
10 |
+
interpolation=1,
|
11 |
+
p=0.5),
|
12 |
+
dict(
|
13 |
+
type='RandomBrightnessContrast',
|
14 |
+
brightness_limit=[0.1, 0.3],
|
15 |
+
contrast_limit=[0.1, 0.3],
|
16 |
+
p=0.2),
|
17 |
+
dict(
|
18 |
+
type='OneOf',
|
19 |
+
transforms=[
|
20 |
+
dict(
|
21 |
+
type='RGBShift',
|
22 |
+
r_shift_limit=10,
|
23 |
+
g_shift_limit=10,
|
24 |
+
b_shift_limit=10,
|
25 |
+
p=1.0),
|
26 |
+
dict(
|
27 |
+
type='HueSaturationValue',
|
28 |
+
hue_shift_limit=20,
|
29 |
+
sat_shift_limit=30,
|
30 |
+
val_shift_limit=20,
|
31 |
+
p=1.0)
|
32 |
+
],
|
33 |
+
p=0.1),
|
34 |
+
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
|
35 |
+
dict(type='ChannelShuffle', p=0.1),
|
36 |
+
dict(
|
37 |
+
type='OneOf',
|
38 |
+
transforms=[
|
39 |
+
dict(type='Blur', blur_limit=3, p=1.0),
|
40 |
+
dict(type='MedianBlur', blur_limit=3, p=1.0)
|
41 |
+
],
|
42 |
+
p=0.1),
|
43 |
+
]
|
44 |
+
train_pipeline = [
|
45 |
+
dict(type='LoadImageFromFile'),
|
46 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
47 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
48 |
+
dict(type='Pad', size_divisor=32),
|
49 |
+
dict(
|
50 |
+
type='Albu',
|
51 |
+
transforms=albu_train_transforms,
|
52 |
+
bbox_params=dict(
|
53 |
+
type='BboxParams',
|
54 |
+
format='pascal_voc',
|
55 |
+
label_fields=['gt_labels'],
|
56 |
+
min_visibility=0.0,
|
57 |
+
filter_lost_elements=True),
|
58 |
+
keymap={
|
59 |
+
'img': 'image',
|
60 |
+
'gt_masks': 'masks',
|
61 |
+
'gt_bboxes': 'bboxes'
|
62 |
+
},
|
63 |
+
update_pad_shape=False,
|
64 |
+
skip_img_without_anno=True),
|
65 |
+
dict(type='Normalize', **img_norm_cfg),
|
66 |
+
dict(type='DefaultFormatBundle'),
|
67 |
+
dict(
|
68 |
+
type='Collect',
|
69 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'],
|
70 |
+
meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg',
|
71 |
+
'pad_shape', 'scale_factor'))
|
72 |
+
]
|
73 |
+
data = dict(train=dict(pipeline=train_pipeline))
|
configs/atss/README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
[ALGORITHM]
|
6 |
+
|
7 |
+
```latex
|
8 |
+
@article{zhang2019bridging,
|
9 |
+
title = {Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection},
|
10 |
+
author = {Zhang, Shifeng and Chi, Cheng and Yao, Yongqiang and Lei, Zhen and Li, Stan Z.},
|
11 |
+
journal = {arXiv preprint arXiv:1912.02424},
|
12 |
+
year = {2019}
|
13 |
+
}
|
14 |
+
```
|
15 |
+
|
16 |
+
## Results and Models
|
17 |
+
|
18 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|
19 |
+
|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
|
20 |
+
| R-50 | pytorch | 1x | 3.7 | 19.7 | 39.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/atss/atss_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209_102539.log.json) |
|
21 |
+
| R-101 | pytorch | 1x | 5.6 | 12.3 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/atss/atss_r101_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.log.json) |
|
configs/atss/atss_r101_fpn_1x_coco.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './atss_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
pretrained='torchvision://resnet101',
|
4 |
+
backbone=dict(depth=101),
|
5 |
+
)
|
configs/atss/atss_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = [
|
2 |
+
'../_base_/datasets/coco_detection.py',
|
3 |
+
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
|
4 |
+
]
|
5 |
+
model = dict(
|
6 |
+
type='ATSS',
|
7 |
+
pretrained='torchvision://resnet50',
|
8 |
+
backbone=dict(
|
9 |
+
type='ResNet',
|
10 |
+
depth=50,
|
11 |
+
num_stages=4,
|
12 |
+
out_indices=(0, 1, 2, 3),
|
13 |
+
frozen_stages=1,
|
14 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
15 |
+
norm_eval=True,
|
16 |
+
style='pytorch'),
|
17 |
+
neck=dict(
|
18 |
+
type='FPN',
|
19 |
+
in_channels=[256, 512, 1024, 2048],
|
20 |
+
out_channels=256,
|
21 |
+
start_level=1,
|
22 |
+
add_extra_convs='on_output',
|
23 |
+
num_outs=5),
|
24 |
+
bbox_head=dict(
|
25 |
+
type='ATSSHead',
|
26 |
+
num_classes=80,
|
27 |
+
in_channels=256,
|
28 |
+
stacked_convs=4,
|
29 |
+
feat_channels=256,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
ratios=[1.0],
|
33 |
+
octave_base_scale=8,
|
34 |
+
scales_per_octave=1,
|
35 |
+
strides=[8, 16, 32, 64, 128]),
|
36 |
+
bbox_coder=dict(
|
37 |
+
type='DeltaXYWHBBoxCoder',
|
38 |
+
target_means=[.0, .0, .0, .0],
|
39 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
40 |
+
loss_cls=dict(
|
41 |
+
type='FocalLoss',
|
42 |
+
use_sigmoid=True,
|
43 |
+
gamma=2.0,
|
44 |
+
alpha=0.25,
|
45 |
+
loss_weight=1.0),
|
46 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
47 |
+
loss_centerness=dict(
|
48 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
|
49 |
+
# training and testing settings
|
50 |
+
train_cfg=dict(
|
51 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
52 |
+
allowed_border=-1,
|
53 |
+
pos_weight=-1,
|
54 |
+
debug=False),
|
55 |
+
test_cfg=dict(
|
56 |
+
nms_pre=1000,
|
57 |
+
min_bbox_size=0,
|
58 |
+
score_thr=0.05,
|
59 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
60 |
+
max_per_img=100))
|
61 |
+
# optimizer
|
62 |
+
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
|
configs/carafe/README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CARAFE: Content-Aware ReAssembly of FEatures
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
[ALGORITHM]
|
6 |
+
|
7 |
+
We provide config files to reproduce the object detection & instance segmentation results in the ICCV 2019 Oral paper for [CARAFE: Content-Aware ReAssembly of FEatures](https://arxiv.org/abs/1905.02188).
|
8 |
+
|
9 |
+
```
|
10 |
+
@inproceedings{Wang_2019_ICCV,
|
11 |
+
title = {CARAFE: Content-Aware ReAssembly of FEatures},
|
12 |
+
author = {Wang, Jiaqi and Chen, Kai and Xu, Rui and Liu, Ziwei and Loy, Chen Change and Lin, Dahua},
|
13 |
+
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
|
14 |
+
month = {October},
|
15 |
+
year = {2019}
|
16 |
+
}
|
17 |
+
```
|
18 |
+
|
19 |
+
## Results and Models
|
20 |
+
|
21 |
+
The results on COCO 2017 val is shown in the below table.
|
22 |
+
|
23 |
+
| Method | Backbone | Style | Lr schd | Test Proposal Num | Inf time (fps) | Box AP | Mask AP | Config | Download |
|
24 |
+
|:--------------------:|:--------:|:-------:|:-------:|:-----------------:|:--------------:|:------:|:-------:|:------:|:--------:|
|
25 |
+
| Faster R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | 16.5 | 38.6 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/carafe/faster_rcnn_r50_fpn_carafe_1x_coco/faster_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.386_20200504_175733-385a75b7.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/carafe/faster_rcnn_r50_fpn_carafe_1x_coco/faster_rcnn_r50_fpn_carafe_1x_coco_20200504_175733.log.json) |
|
26 |
+
| - | - | - | - | 2000 | | | | |
|
27 |
+
| Mask R-CNN w/ CARAFE | R-50-FPN | pytorch | 1x | 1000 | 14.0 | 39.3 | 35.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/carafe/mask_rcnn_r50_fpn_carafe_1x_coco/mask_rcnn_r50_fpn_carafe_1x_coco_bbox_mAP-0.393__segm_mAP-0.358_20200503_135957-8687f195.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/carafe/mask_rcnn_r50_fpn_carafe_1x_coco/mask_rcnn_r50_fpn_carafe_1x_coco_20200503_135957.log.json) |
|
28 |
+
| - | - | - | - | 2000 | | | | |
|
29 |
+
|
30 |
+
## Implementation
|
31 |
+
|
32 |
+
The CUDA implementation of CARAFE can be find at https://github.com/myownskyW7/CARAFE.
|
configs/carafe/faster_rcnn_r50_fpn_carafe_1x_coco.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
neck=dict(
|
4 |
+
type='FPN_CARAFE',
|
5 |
+
in_channels=[256, 512, 1024, 2048],
|
6 |
+
out_channels=256,
|
7 |
+
num_outs=5,
|
8 |
+
start_level=0,
|
9 |
+
end_level=-1,
|
10 |
+
norm_cfg=None,
|
11 |
+
act_cfg=None,
|
12 |
+
order=('conv', 'norm', 'act'),
|
13 |
+
upsample_cfg=dict(
|
14 |
+
type='carafe',
|
15 |
+
up_kernel=5,
|
16 |
+
up_group=1,
|
17 |
+
encoder_kernel=3,
|
18 |
+
encoder_dilation=1,
|
19 |
+
compressed_channels=64)))
|
20 |
+
img_norm_cfg = dict(
|
21 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
22 |
+
train_pipeline = [
|
23 |
+
dict(type='LoadImageFromFile'),
|
24 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
25 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
26 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
27 |
+
dict(type='Normalize', **img_norm_cfg),
|
28 |
+
dict(type='Pad', size_divisor=64),
|
29 |
+
dict(type='DefaultFormatBundle'),
|
30 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
31 |
+
]
|
32 |
+
test_pipeline = [
|
33 |
+
dict(type='LoadImageFromFile'),
|
34 |
+
dict(
|
35 |
+
type='MultiScaleFlipAug',
|
36 |
+
img_scale=(1333, 800),
|
37 |
+
flip=False,
|
38 |
+
transforms=[
|
39 |
+
dict(type='Resize', keep_ratio=True),
|
40 |
+
dict(type='RandomFlip'),
|
41 |
+
dict(type='Normalize', **img_norm_cfg),
|
42 |
+
dict(type='Pad', size_divisor=64),
|
43 |
+
dict(type='ImageToTensor', keys=['img']),
|
44 |
+
dict(type='Collect', keys=['img']),
|
45 |
+
])
|
46 |
+
]
|
47 |
+
data = dict(
|
48 |
+
train=dict(pipeline=train_pipeline),
|
49 |
+
val=dict(pipeline=test_pipeline),
|
50 |
+
test=dict(pipeline=test_pipeline))
|
configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
neck=dict(
|
4 |
+
type='FPN_CARAFE',
|
5 |
+
in_channels=[256, 512, 1024, 2048],
|
6 |
+
out_channels=256,
|
7 |
+
num_outs=5,
|
8 |
+
start_level=0,
|
9 |
+
end_level=-1,
|
10 |
+
norm_cfg=None,
|
11 |
+
act_cfg=None,
|
12 |
+
order=('conv', 'norm', 'act'),
|
13 |
+
upsample_cfg=dict(
|
14 |
+
type='carafe',
|
15 |
+
up_kernel=5,
|
16 |
+
up_group=1,
|
17 |
+
encoder_kernel=3,
|
18 |
+
encoder_dilation=1,
|
19 |
+
compressed_channels=64)),
|
20 |
+
roi_head=dict(
|
21 |
+
mask_head=dict(
|
22 |
+
upsample_cfg=dict(
|
23 |
+
type='carafe',
|
24 |
+
scale_factor=2,
|
25 |
+
up_kernel=5,
|
26 |
+
up_group=1,
|
27 |
+
encoder_kernel=3,
|
28 |
+
encoder_dilation=1,
|
29 |
+
compressed_channels=64))))
|
30 |
+
img_norm_cfg = dict(
|
31 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
32 |
+
train_pipeline = [
|
33 |
+
dict(type='LoadImageFromFile'),
|
34 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
35 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
36 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
37 |
+
dict(type='Normalize', **img_norm_cfg),
|
38 |
+
dict(type='Pad', size_divisor=64),
|
39 |
+
dict(type='DefaultFormatBundle'),
|
40 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
41 |
+
]
|
42 |
+
test_pipeline = [
|
43 |
+
dict(type='LoadImageFromFile'),
|
44 |
+
dict(
|
45 |
+
type='MultiScaleFlipAug',
|
46 |
+
img_scale=(1333, 800),
|
47 |
+
flip=False,
|
48 |
+
transforms=[
|
49 |
+
dict(type='Resize', keep_ratio=True),
|
50 |
+
dict(type='RandomFlip'),
|
51 |
+
dict(type='Normalize', **img_norm_cfg),
|
52 |
+
dict(type='Pad', size_divisor=64),
|
53 |
+
dict(type='ImageToTensor', keys=['img']),
|
54 |
+
dict(type='Collect', keys=['img']),
|
55 |
+
])
|
56 |
+
]
|
57 |
+
data = dict(
|
58 |
+
train=dict(pipeline=train_pipeline),
|
59 |
+
val=dict(pipeline=test_pipeline),
|
60 |
+
test=dict(pipeline=test_pipeline))
|
configs/cascade_rcnn/README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cascade R-CNN: High Quality Object Detection and Instance Segmentation
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
[ALGORITHM]
|
6 |
+
|
7 |
+
```latex
|
8 |
+
@article{Cai_2019,
|
9 |
+
title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation},
|
10 |
+
ISSN={1939-3539},
|
11 |
+
url={http://dx.doi.org/10.1109/tpami.2019.2956516},
|
12 |
+
DOI={10.1109/tpami.2019.2956516},
|
13 |
+
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
14 |
+
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
|
15 |
+
author={Cai, Zhaowei and Vasconcelos, Nuno},
|
16 |
+
year={2019},
|
17 |
+
pages={1–1}
|
18 |
+
}
|
19 |
+
```
|
20 |
+
|
21 |
+
## Results and models
|
22 |
+
|
23 |
+
### Cascade R-CNN
|
24 |
+
|
25 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|
26 |
+
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: |:------:|:--------:|
|
27 |
+
| R-50-FPN | caffe | 1x | 4.2 | | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.404_20200504_174853-b857be87.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco/cascade_rcnn_r50_caffe_fpn_1x_coco_20200504_174853.log.json) |
|
28 |
+
| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco/cascade_rcnn_r50_fpn_1x_coco_20200316_214748.log.json) |
|
29 |
+
| R-50-FPN | pytorch | 20e | - | - | 41.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_bbox_mAP-0.41_20200504_175131-e9872a90.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco/cascade_rcnn_r50_fpn_20e_coco_20200504_175131.log.json) |
|
30 |
+
| R-101-FPN | caffe | 1x | 6.2 | | 42.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.423_20200504_175649-cab8dbd5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco/cascade_rcnn_r101_caffe_fpn_1x_coco_20200504_175649.log.json) |
|
31 |
+
| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco/cascade_rcnn_r101_fpn_1x_coco_20200317_101744.log.json) |
|
32 |
+
| R-101-FPN | pytorch | 20e | - | - | 42.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_bbox_mAP-0.425_20200504_231812-5057dcc5.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco/cascade_rcnn_r101_fpn_20e_coco_20200504_231812.log.json) |
|
33 |
+
| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 10.9 | 43.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316_055608.log.json) |
|
34 |
+
| X-101-32x4d-FPN | pytorch | 20e | 7.6 | | 43.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608-9ae0a720.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco/cascade_rcnn_x101_32x4d_fpn_20e_coco_20200906_134608.log.json) |
|
35 |
+
| X-101-64x4d-FPN | pytorch | 1x | 10.7 | | 44.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702.log.json) |
|
36 |
+
| X-101-64x4d-FPN | pytorch | 20e | 10.7 | | 44.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357.log.json)|
|
37 |
+
|
38 |
+
### Cascade Mask R-CNN
|
39 |
+
|
40 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|
41 |
+
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
|
42 |
+
| R-50-FPN | caffe | 1x | 5.9 | | 41.2 | 36.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.412__segm_mAP-0.36_20200504_174659-5004b251.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco/cascade_mask_rcnn_r50_caffe_fpn_1x_coco_20200504_174659.log.json) |
|
43 |
+
| R-50-FPN | pytorch | 1x | 6.0 | 11.2 | 41.2 | 35.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203_170449.log.json) |
|
44 |
+
| R-50-FPN | pytorch | 20e | - | - | 41.9 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_bbox_mAP-0.419__segm_mAP-0.365_20200504_174711-4af8e66e.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco/cascade_mask_rcnn_r50_fpn_20e_coco_20200504_174711.log.json)|
|
45 |
+
| R-101-FPN | caffe | 1x | 7.8 | | 43.2 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.432__segm_mAP-0.376_20200504_174813-5c1e9599.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco/cascade_mask_rcnn_r101_caffe_fpn_1x_coco_20200504_174813.log.json)|
|
46 |
+
| R-101-FPN | pytorch | 1x | 7.9 | 9.8 | 42.9 | 37.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203-befdf6ee.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco/cascade_mask_rcnn_r101_fpn_1x_coco_20200203_092521.log.json) |
|
47 |
+
| R-101-FPN | pytorch | 20e | - | - | 43.4 | 37.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_bbox_mAP-0.434__segm_mAP-0.378_20200504_174836-005947da.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco/cascade_mask_rcnn_r101_fpn_20e_coco_20200504_174836.log.json)|
|
48 |
+
| X-101-32x4d-FPN | pytorch | 1x | 9.2 | 8.6 | 44.3 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201-0f411b1f.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco_20200201_052416.log.json) |
|
49 |
+
| X-101-32x4d-FPN | pytorch | 20e | 9.2 | - | 45.0 | 39.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917-ed1f4751.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco_20200528_083917.log.json) |
|
50 |
+
| X-101-64x4d-FPN | pytorch | 1x | 12.2 | 6.7 | 45.3 | 39.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203-9a2db89d.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco_20200203_044059.log.json) |
|
51 |
+
| X-101-64x4d-FPN | pytorch | 20e | 12.2 | | 45.6 |39.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033-bdb5126a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco_20200512_161033.log.json)|
|
52 |
+
|
53 |
+
**Notes:**
|
54 |
+
|
55 |
+
- The `20e` schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.
|
configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
pretrained='open-mmlab://detectron2/resnet101_caffe',
|
4 |
+
backbone=dict(depth=101))
|
configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
|
configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
|
2 |
+
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
|
configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py']
|
2 |
+
|
3 |
+
model = dict(
|
4 |
+
pretrained='open-mmlab://detectron2/resnet50_caffe',
|
5 |
+
backbone=dict(
|
6 |
+
norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
|
7 |
+
|
8 |
+
img_norm_cfg = dict(
|
9 |
+
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
|
10 |
+
train_pipeline = [
|
11 |
+
dict(type='LoadImageFromFile'),
|
12 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
13 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
14 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
15 |
+
dict(type='Normalize', **img_norm_cfg),
|
16 |
+
dict(type='Pad', size_divisor=32),
|
17 |
+
dict(type='DefaultFormatBundle'),
|
18 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(
|
23 |
+
type='MultiScaleFlipAug',
|
24 |
+
img_scale=(1333, 800),
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='Resize', keep_ratio=True),
|
28 |
+
dict(type='RandomFlip'),
|
29 |
+
dict(type='Normalize', **img_norm_cfg),
|
30 |
+
dict(type='Pad', size_divisor=32),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img']),
|
33 |
+
])
|
34 |
+
]
|
35 |
+
data = dict(
|
36 |
+
train=dict(pipeline=train_pipeline),
|
37 |
+
val=dict(pipeline=test_pipeline),
|
38 |
+
test=dict(pipeline=test_pipeline))
|
configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = [
|
2 |
+
'../_base_/models/cascade_mask_rcnn_r50_fpn.py',
|
3 |
+
'../_base_/datasets/coco_instance.py',
|
4 |
+
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
|
5 |
+
]
|
configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = [
|
2 |
+
'../_base_/models/cascade_mask_rcnn_r50_fpn.py',
|
3 |
+
'../_base_/datasets/coco_instance.py',
|
4 |
+
'../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
|
5 |
+
]
|
configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
pretrained='open-mmlab://resnext101_32x4d',
|
4 |
+
backbone=dict(
|
5 |
+
type='ResNeXt',
|
6 |
+
depth=101,
|
7 |
+
groups=32,
|
8 |
+
base_width=4,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
frozen_stages=1,
|
12 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
13 |
+
style='pytorch'))
|
configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
|
2 |
+
model = dict(
|
3 |
+
pretrained='open-mmlab://resnext101_32x4d',
|
4 |
+
backbone=dict(
|
5 |
+
type='ResNeXt',
|
6 |
+
depth=101,
|
7 |
+
groups=32,
|
8 |
+
base_width=4,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
frozen_stages=1,
|
12 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
13 |
+
style='pytorch'))
|
configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
pretrained='open-mmlab://resnext101_64x4d',
|
4 |
+
backbone=dict(
|
5 |
+
type='ResNeXt',
|
6 |
+
depth=101,
|
7 |
+
groups=64,
|
8 |
+
base_width=4,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
frozen_stages=1,
|
12 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
13 |
+
style='pytorch'))
|