Spaces:
Runtime error
Runtime error
File size: 7,175 Bytes
b6fa3b6 d02b0d1 b6fa3b6 d02b0d1 b6fa3b6 f9b4404 f04732f f9b4404 adb2480 f9b4404 f4ce971 aab5615 1ee8303 f9b4404 aab5615 0b94d49 1ee8303 aab5615 eea41dc d02b0d1 8ca72f4 d2eb8e2 8ca72f4 f04732f b6fa3b6 f04732f 8ca72f4 d5fb61d b6fa3b6 d5fb61d b6fa3b6 1117f0e 8eae1e0 b6fa3b6 1117f0e 70f2766 b6fa3b6 70f2766 b6fa3b6 d5fb61d 8ca72f4 70f2766 b6fa3b6 d5fb61d 70f2766 b6fa3b6 70f2766 b6fa3b6 58cf028 b6fa3b6 58cf028 f04732f 8ca72f4 2b4ac08 f9b4404 8ca72f4 f9b4404 8ca72f4 f9b4404 eea41dc adb2480 4eb57c6 f9b4404 39adbdc f9b4404 0b94d49 f9b4404 39adbdc f9b4404 39adbdc f9b4404 3eddf74 f9b4404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
from datasets import load_dataset
import spaces
import pandas as pd
rekaeval = "RekaAI/VibeEval"
dataset = load_dataset(rekaeval, split="test")
df = pd.DataFrame(dataset)
df = df[['media_url', 'prompt']]
df_markdown = df.copy()
# Function to convert URL to HTML img tag
def mediaurl_to_img_tag(url):
return f'<img src="{url}">'
# Apply the function to the DataFrame column
df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag)
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://avatars.githubusercontent.com/u/51063788?s=400&u=479ecc9d93d8a373b5c2e69ebe846f394811e94a&v=4)" style="width:40%" opacity="0.30">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama3-8B With REKA Vibe-Eval</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Test your Vision LLMs with new Vibe-Evals from REKA</p>
</div>
"""
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval"
description="Evaluate <a href='https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers'>LLaVA-Llama3-8B</a> on <b.REKA Vibe-Evals</b>. Click on a row in the Eval dataset and start chatting about it."
CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; }
"""
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model.to("cuda:0")
model.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False, scale=1)
tmp = '''with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)'''
with gr.Blocks(fill_height=True, css=CSS) as demo:
gr.HTML(f'<h1><center>{title}</center></h1>')
gr.HTML(f'<center>{description}</center>')
with gr.Row(equal_height=True):
with gr.Column():
gr.ChatInterface(
fn=bot_streaming,
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
with gr.Column():
with gr.Row():
b1 = gr.Button("Previous", interactive=False)
b2 = gr.Button("Next")
reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700)
num_start = gr.Number(visible=False, value=0)
num_end = gr.Number(visible=False, value=4)
def get_example(reka, start, evt: gr.SelectData):
print(f'evt.value = {evt.value}')
print(f'evt.index = {evt.index}')
x = evt.index[0] + start
image = df.iloc[x, 0]
prompt = df.iloc[x, 1]
print(f'image = {image}')
print(f'prompt = {prompt}')
example = {"text": prompt, "files": [image]}
return example
def display_next(dataframe, end):
print(f'initial value of end = {end}')
start = (end or dataframe.index[-1]) + 1
end = start + 4
df_images = df_markdown.loc[start:end]
print(f'returned value of end = {end}')
print(f'returned value of start = {start}')
return df_images, end, start, gr.Button(interactive=True)
def display_previous(dataframe, start):
print(f'initial value of start = {start}')
end = (start or dataframe.index[-1])
start = end - 5
df_images = df_markdown.loc[start:end]
print(f'returned value of start = {start}')
print(f'returned value of end = {end}')
return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True)
reka.select(get_example, [reka,num_start], chat_input, show_progress="hidden")
b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False)
b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows")
demo.queue()
demo.launch(debug=True) |