File size: 7,438 Bytes
b6fa3b6
 
d02b0d1
b6fa3b6
 
 
d02b0d1
b6fa3b6
f9b4404
f04732f
f9b4404
 
 
 
 
5dc3275
 
f9b4404
 
 
 
 
 
 
f4ce971
aab5615
 
 
1ee8303
f9b4404
 
aab5615
 
0b94d49
1ee8303
aab5615
eea41dc
5f23616
 
 
eea41dc
d02b0d1
8ca72f4
 
 
 
d2eb8e2
 
 
8ca72f4
 
f04732f
b6fa3b6
f04732f
8ca72f4
d5fb61d
 
b6fa3b6
 
 
 
 
d5fb61d
 
 
 
b6fa3b6
 
1117f0e
8eae1e0
 
b6fa3b6
1117f0e
70f2766
b6fa3b6
 
 
 
70f2766
 
b6fa3b6
 
 
d5fb61d
8ca72f4
70f2766
b6fa3b6
 
 
d5fb61d
70f2766
b6fa3b6
70f2766
b6fa3b6
 
 
58cf028
b6fa3b6
 
 
 
 
 
58cf028
f04732f
 
9dfedcc
2b4ac08
f9b4404
8ca72f4
 
f9b4404
8ca72f4
 
 
 
 
 
 
f9b4404
 
eea41dc
adb2480
 
4eb57c6
f9b4404
 
 
 
 
 
 
 
 
5dc3275
5010e3b
f9b4404
39adbdc
f9b4404
0b94d49
f9b4404
 
 
39adbdc
f9b4404
 
39adbdc
f9b4404
 
5dc3275
f9b4404
 
 
5010e3b
f9b4404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5010e3b
f9b4404
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import time
from threading import Thread

import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
from datasets import load_dataset
import spaces
import pandas as pd

rekaeval = "RekaAI/VibeEval"
dataset = load_dataset(rekaeval, split="test")
df = pd.DataFrame(dataset)
df = df[['media_url', 'prompt', 'reference']]
df_markdown = df[['media_url', 'prompt']].copy()

# Function to convert URL to HTML img tag
def mediaurl_to_img_tag(url):
    return f'<img src="{url}">'

# Apply the function to the DataFrame column
df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag)


PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://avatars.githubusercontent.com/u/51063788?s=400&u=479ecc9d93d8a373b5c2e69ebe846f394811e94a&v=4)" style="width:40%" opacity="0.30">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama3-8B With REKA Vibe-Eval</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Test your Vision LLMs with new Vibe-Evals from REKA</p>
</div>
"""
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval"
description="Evaluate <a href='https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers'>LLaVA-Llama3-8B</a> on <b.REKA Vibe-Evals</b>. Click on a row in the Eval dataset and start chatting about it."

CSS ="""
.contain { display: flex !important; flex-direction: column !important; }
#component-0 { height: 100% !important; }
#chatbot { flex-grow: 1 !important; }
"""

model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
)
model.to("cuda:0")
model.generation_config.eos_token_id = 128009


@spaces.GPU
def bot_streaming(message, history):
    print(message)
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            gr.Error("You need to upload an image for LLaVA to work.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        gr.Error("You need to upload an image for LLaVA to work.")

    prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"prompt: {prompt}")
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"text_prompt: {text_prompt}")

    buffer = ""
    time.sleep(0.5)
    for new_text in streamer:
        # find <|eot_id|> and remove it from the new_text
        if "<|eot_id|>" in new_text:
            new_text = new_text.split("<|eot_id|>")[0]
        buffer += new_text

        # generated_text_without_prompt = buffer[len(text_prompt):]
        generated_text_without_prompt = buffer
        # print(generated_text_without_prompt)
        time.sleep(0.06)
        # print(f"new_text: {generated_text_without_prompt}")
        yield generated_text_without_prompt


chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1, elem_id='chatbot')
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False, scale=1)
tmp = '''with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
    fn=bot_streaming,
    title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval",
    examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
              {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
    description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
    stop_btn="Stop Generation",
    multimodal=True,
    textbox=chat_input,
    chatbot=chatbot,
    )'''

with gr.Blocks(fill_height=True, css=CSS) as demo:
  gr.HTML(f'<h1><center>{title}</center></h1>')
  gr.HTML(f'<center>{description}</center>') 
  with gr.Row(equal_height=True):
    with gr.Column():
      gr.ChatInterface(
            fn=bot_streaming,
            stop_btn="Stop Generation",
            multimodal=True,
            textbox=chat_input,
            chatbot=chatbot,
        )
    with gr.Column():
      with gr.Accordion('Open for looking at Ground Truth:', open=False):
          refrence = gr.Markdown()
      with gr.Row():
        b1 = gr.Button("Previous", interactive=False)
        b2 = gr.Button("Next")
      reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700)
      num_start = gr.Number(visible=False, value=0)
      num_end = gr.Number(visible=False, value=4)
    
  def get_example(reka, start, evt: gr.SelectData):
      print(f'evt.value = {evt.value}')
      print(f'evt.index = {evt.index}')
      x = evt.index[0] + start
      image = df.iloc[x, 0]  
      prompt = df.iloc[x, 1]
      refrence = df.iloc[x, 2]
      print(f'image = {image}')
      print(f'prompt = {prompt}')
      example = {"text": prompt, "files": [image]}
      return example, refrence

  def display_next(dataframe, end):
    print(f'initial value of end = {end}')
    start = (end  or dataframe.index[-1]) + 1
    end = start + 4
    df_images = df_markdown.loc[start:end]
    print(f'returned value of end = {end}')
    print(f'returned value of start = {start}')
    return df_images, end, start, gr.Button(interactive=True)

  def display_previous(dataframe, start):
    print(f'initial value of start = {start}')
    end = (start  or dataframe.index[-1]) 
    start = end - 5
    df_images = df_markdown.loc[start:end]
    print(f'returned value of start = {start}')
    print(f'returned value of end = {end}')
    return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True)

  reka.select(get_example, [reka,num_start], [chat_input, refrence], show_progress="hidden")
  b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False)
  b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows")


demo.queue()
demo.launch(debug=True)