Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import uuid
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from diffusers import FluxInpaintPipeline
|
10 |
+
|
11 |
+
from gradio_client import Client, handle_file
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Set an environment variable
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
+
|
17 |
+
MARKDOWN = """
|
18 |
+
# FLUX.1 Inpainting with Text guided Mask🔥
|
19 |
+
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
|
20 |
+
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
|
21 |
+
for taking it to the next level by enabling inpainting with the FLUX.
|
22 |
+
"""
|
23 |
+
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
MAX_IMAGE_SIZE = 2048
|
26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
|
28 |
+
# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint
|
29 |
+
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)
|
30 |
+
|
31 |
+
|
32 |
+
pipe = FluxInpaintPipeline.from_pretrained(
|
33 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
34 |
+
|
35 |
+
|
36 |
+
def resize_image_dimensions(
|
37 |
+
original_resolution_wh: Tuple[int, int],
|
38 |
+
maximum_dimension: int = 2048
|
39 |
+
) -> Tuple[int, int]:
|
40 |
+
width, height = original_resolution_wh
|
41 |
+
|
42 |
+
if width <= maximum_dimension and height <= maximum_dimension:
|
43 |
+
width = width - (width % 32)
|
44 |
+
height = height - (height % 32)
|
45 |
+
return width, height
|
46 |
+
|
47 |
+
if width > height:
|
48 |
+
scaling_factor = maximum_dimension / width
|
49 |
+
else:
|
50 |
+
scaling_factor = maximum_dimension / height
|
51 |
+
|
52 |
+
new_width = int(width * scaling_factor)
|
53 |
+
new_height = int(height * scaling_factor)
|
54 |
+
|
55 |
+
new_width = new_width - (new_width % 32)
|
56 |
+
new_height = new_height - (new_height % 32)
|
57 |
+
|
58 |
+
return new_width, new_height
|
59 |
+
|
60 |
+
|
61 |
+
def evf_sam_mask(image, prompt):
|
62 |
+
print(type(image))
|
63 |
+
filename=str(uuid.uuid4()) + ".jpg"
|
64 |
+
image.save(filename)
|
65 |
+
images = client.predict(
|
66 |
+
image_np=handle_file(filename),
|
67 |
+
prompt=prompt,
|
68 |
+
api_name="/predict")
|
69 |
+
print(images)
|
70 |
+
# Open the image
|
71 |
+
webp_image = Image.open(images[1])
|
72 |
+
# Convert to RGB mode if it's not already
|
73 |
+
if webp_image.mode != 'RGB':
|
74 |
+
webp_image = webp_image.convert('RGB')
|
75 |
+
# Create a new PIL Image object
|
76 |
+
pil_image = Image.new('RGB', webp_image.size)
|
77 |
+
pil_image.paste(webp_image)
|
78 |
+
|
79 |
+
print(pil_image)
|
80 |
+
print(type(pil_image))
|
81 |
+
|
82 |
+
return pil_image
|
83 |
+
|
84 |
+
@spaces.GPU(duration=150)
|
85 |
+
def process(
|
86 |
+
input_image_editor: dict,
|
87 |
+
input_text: str,
|
88 |
+
inpaint_text: str,
|
89 |
+
seed_slicer: int,
|
90 |
+
randomize_seed_checkbox: bool,
|
91 |
+
strength_slider: float,
|
92 |
+
num_inference_steps_slider: int,
|
93 |
+
progress=gr.Progress(track_tqdm=True)
|
94 |
+
):
|
95 |
+
if not input_text:
|
96 |
+
gr.Info("Please enter a text prompt.")
|
97 |
+
return None
|
98 |
+
|
99 |
+
image = input_image_editor['background']
|
100 |
+
#mask = input_image_editor['layers'][0]
|
101 |
+
print(f"type of image: {type(image)}")
|
102 |
+
mask = evf_sam_mask(image, input_text)
|
103 |
+
print(f"type of mask: {type(mask)}")
|
104 |
+
print(f"inpaint_text: {inpaint_text}")
|
105 |
+
print(f"input_text: {input_text}")
|
106 |
+
|
107 |
+
if not image:
|
108 |
+
gr.Info("Please upload an image.")
|
109 |
+
return None
|
110 |
+
|
111 |
+
if not mask:
|
112 |
+
gr.Info("Please draw a mask on the image.")
|
113 |
+
return None
|
114 |
+
|
115 |
+
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
116 |
+
resized_image = image.resize((width, height), Image.LANCZOS)
|
117 |
+
resized_mask = mask.resize((width, height), Image.NEAREST)
|
118 |
+
|
119 |
+
if randomize_seed_checkbox:
|
120 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
121 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
122 |
+
result = pipe(
|
123 |
+
prompt=inpaint_text,
|
124 |
+
image=resized_image,
|
125 |
+
mask_image=resized_mask,
|
126 |
+
width=width,
|
127 |
+
height=height,
|
128 |
+
strength=strength_slider,
|
129 |
+
generator=generator,
|
130 |
+
num_inference_steps=num_inference_steps_slider
|
131 |
+
).images[0]
|
132 |
+
print('INFERENCE DONE')
|
133 |
+
return result, resized_mask
|
134 |
+
|
135 |
+
|
136 |
+
with gr.Blocks() as demo:
|
137 |
+
gr.Markdown(MARKDOWN)
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column():
|
140 |
+
input_image_editor_component = gr.ImageEditor(
|
141 |
+
label='Image',
|
142 |
+
type='pil',
|
143 |
+
sources=["upload", "webcam"],
|
144 |
+
image_mode='RGB',
|
145 |
+
layers=False,
|
146 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
input_text_component = gr.Text(
|
151 |
+
label="Segment",
|
152 |
+
show_label=False,
|
153 |
+
max_lines=1,
|
154 |
+
placeholder="segmentation text",
|
155 |
+
container=False,
|
156 |
+
)
|
157 |
+
inpaint_text_component = gr.Text(
|
158 |
+
label="Inpaint",
|
159 |
+
show_label=False,
|
160 |
+
max_lines=1,
|
161 |
+
placeholder="Inpaint text",
|
162 |
+
container=False,
|
163 |
+
)
|
164 |
+
submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)
|
165 |
+
|
166 |
+
with gr.Accordion("Advanced Settings", open=False):
|
167 |
+
seed_slicer_component = gr.Slider(
|
168 |
+
label="Seed",
|
169 |
+
minimum=0,
|
170 |
+
maximum=MAX_SEED,
|
171 |
+
step=1,
|
172 |
+
value=42,
|
173 |
+
)
|
174 |
+
|
175 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
176 |
+
label="Randomize seed", value=False)
|
177 |
+
|
178 |
+
with gr.Row():
|
179 |
+
strength_slider_component = gr.Slider(
|
180 |
+
label="Strength",
|
181 |
+
minimum=0,
|
182 |
+
maximum=1,
|
183 |
+
step=0.01,
|
184 |
+
value=0.75,
|
185 |
+
)
|
186 |
+
|
187 |
+
num_inference_steps_slider_component = gr.Slider(
|
188 |
+
label="Number of inference steps",
|
189 |
+
minimum=1,
|
190 |
+
maximum=50,
|
191 |
+
step=1,
|
192 |
+
value=20,
|
193 |
+
)
|
194 |
+
with gr.Column():
|
195 |
+
output_image_component = gr.Image(
|
196 |
+
type='pil', image_mode='RGB', label='Generated image')
|
197 |
+
with gr.Accordion("Generated Mask", open=False):
|
198 |
+
output_mask_component = gr.Image(
|
199 |
+
type='pil', image_mode='RGB', label='Input mask')
|
200 |
+
|
201 |
+
submit_button_component.click(
|
202 |
+
fn=process,
|
203 |
+
inputs=[
|
204 |
+
input_image_editor_component,
|
205 |
+
input_text_component,
|
206 |
+
inpaint_text_component,
|
207 |
+
seed_slicer_component,
|
208 |
+
randomize_seed_checkbox_component,
|
209 |
+
strength_slider_component,
|
210 |
+
num_inference_steps_slider_component
|
211 |
+
],
|
212 |
+
outputs=[
|
213 |
+
output_image_component,
|
214 |
+
output_mask_component,
|
215 |
+
]
|
216 |
+
)
|
217 |
+
|
218 |
+
demo.launch(debug=True)
|
219 |
+
|