File size: 4,657 Bytes
df5e314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
import typing as tp

import torch

from .base import BaseQuantizer, QuantizedResult
from .core_vq import ResidualVectorQuantization


class ResidualVectorQuantizer(BaseQuantizer):
    """Residual Vector Quantizer.

    Args:
        dimension (int): Dimension of the codebooks.
        n_q (int): Number of residual vector quantizers used.
        q_dropout (bool): Random quantizer drop out at train time.
        bins (int): Codebook size.
        decay (float): Decay for exponential moving average over the codebooks.
        kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
        kmeans_iters (int): Number of iterations used for kmeans initialization.
        threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
            that have an exponential moving average cluster size less than the specified threshold with
            randomly selected vector from the current batch.
        orthogonal_reg_weight (float): Orthogonal regularization weights.
        orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
        orthogonal_reg_max_codes (optional int): Maximum number of codes to consider.
            for orthogonal regulariation.
    """
    def __init__(
        self,
        dimension: int = 256,
        n_q: int = 8,
        q_dropout: bool = False,
        bins: int = 1024,
        decay: float = 0.99,
        kmeans_init: bool = True,
        kmeans_iters: int = 10,
        threshold_ema_dead_code: int = 2,
        orthogonal_reg_weight: float = 0.0,
        orthogonal_reg_active_codes_only: bool = False,
        orthogonal_reg_max_codes: tp.Optional[int] = None,
    ):
        super().__init__()
        self.max_n_q = n_q
        self.n_q = n_q
        self.q_dropout = q_dropout
        self.dimension = dimension
        self.bins = bins
        self.decay = decay
        self.kmeans_init = kmeans_init
        self.kmeans_iters = kmeans_iters
        self.threshold_ema_dead_code = threshold_ema_dead_code
        self.orthogonal_reg_weight = orthogonal_reg_weight
        self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
        self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
        self.vq = ResidualVectorQuantization(
            dim=self.dimension,
            codebook_size=self.bins,
            num_quantizers=self.n_q,
            decay=self.decay,
            kmeans_init=self.kmeans_init,
            kmeans_iters=self.kmeans_iters,
            threshold_ema_dead_code=self.threshold_ema_dead_code,
            orthogonal_reg_weight=self.orthogonal_reg_weight,
            orthogonal_reg_active_codes_only=self.orthogonal_reg_active_codes_only,
            orthogonal_reg_max_codes=self.orthogonal_reg_max_codes,
            channels_last=False
        )

    def forward(self, x: torch.Tensor, frame_rate: int):
        n_q = self.n_q
        if self.training and self.q_dropout:
            n_q = int(torch.randint(1, self.n_q + 1, (1,)).item())
        bw_per_q = math.log2(self.bins) * frame_rate / 1000
        quantized, codes, commit_loss = self.vq(x, n_q=n_q)
        codes = codes.transpose(0, 1)
        # codes is [B, K, T], with T frames, K nb of codebooks.
        bw = torch.tensor(n_q * bw_per_q).to(x)
        return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss))

    def encode(self, x: torch.Tensor) -> torch.Tensor:
        """Encode a given input tensor with the specified frame rate at the given bandwidth.
        The RVQ encode method sets the appropriate number of quantizer to use
        and returns indices for each quantizer.
        """
        n_q = self.n_q
        codes = self.vq.encode(x, n_q=n_q)
        codes = codes.transpose(0, 1)
        # codes is [B, K, T], with T frames, K nb of codebooks.
        return codes

    def decode(self, codes: torch.Tensor) -> torch.Tensor:
        """Decode the given codes to the quantized representation.
        """
        # codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T].
        codes = codes.transpose(0, 1)
        quantized = self.vq.decode(codes)
        return quantized

    @property
    def total_codebooks(self):
        return self.max_n_q

    @property
    def num_codebooks(self):
        return self.n_q

    def set_num_codebooks(self, n: int):
        assert n > 0 and n <= self.max_n_q
        self.n_q = n