""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import random from tempfile import NamedTemporaryFile import argparse import time import torch import gradio as gr import os import numpy as np from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write from audiocraft.data.audio_utils import convert_audio import subprocess, random, string MODEL = None IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '') INTERRUPTED = False UNLOAD_MODEL = False def interrupt(): global INTERRUPTED INTERRUPTED = True print('Interrupted!') def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) def resize_video(input_path, output_path, target_width, target_height): ffmpeg_cmd = [ 'ffmpeg', '-y', '-i', input_path, '-vf', f'scale={target_width}:{target_height}', '-c:a', 'copy', output_path ] subprocess.run(ffmpeg_cmd) def load_model(version): print("Loading model", version) return MusicGen.get_pretrained(version) def predict(model, text, melody, sample, duration, topk, topp, temperature, cfg_coef, seed, overlap=5, recondition=True, background="./assets/background.png", progress=gr.Progress()): global MODEL global INTERRUPTED INTERRUPTED = False topk = int(topk) if MODEL is None or MODEL.name != model: MODEL = load_model(model) if duration > MODEL.lm.cfg.dataset.segment_duration and melody is not None: raise gr.Error("Generating music longer than 30 seconds with melody conditioning is not yet supported!") output = None first_chunk = None total_samples = duration * 50 + 3 segment_duration = duration if seed < 0: seed = random.randint(0, 0xffff_ffff_ffff) torch.manual_seed(seed) predict.last_progress_update = time.monotonic() while duration > 0: if INTERRUPTED: break if output is None: # first pass of long or short song if segment_duration > MODEL.lm.cfg.dataset.segment_duration: segment_duration = MODEL.lm.cfg.dataset.segment_duration else: segment_duration = duration else: # next pass of long song if duration + overlap < MODEL.lm.cfg.dataset.segment_duration: segment_duration = duration + overlap else: segment_duration = MODEL.lm.cfg.dataset.segment_duration print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}') MODEL.set_generation_params( use_sampling=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, duration=segment_duration, ) def updateProgress(step: int, total: int): now = time.monotonic() if now - predict.last_progress_update > 1: progress((total_samples - duration * 50 - 3 + step, total_samples)) predict.last_progress_update = now if sample: def normalize_audio(audio_data): audio_data = audio_data.astype(np.float32) max_value = np.max(np.abs(audio_data)) audio_data = audio_data / max_value return audio_data globalSR, sampleM = sample[0], sample[1] sampleM = normalize_audio(sampleM) sampleM = torch.from_numpy(sampleM).t() if sampleM.dim() > 1: sampleM = convert_audio(sampleM, globalSR, 32000, 1) sampleM = sampleM.to(MODEL.device).float().unsqueeze(0) if sampleM.dim() == 2: sampleM = sampleM[None] sample_length = sampleM.shape[sampleM.dim() - 1] / 32000 if output is None: next_segment = sampleM duration -= sample_length else: if first_chunk is None and MODEL.name == "melody" and recondition: first_chunk = output[:, :, :MODEL.lm.cfg.dataset.segment_duration*MODEL.sample_rate] last_chunk = output[:, :, -overlap*32000:] next_segment = MODEL.generate_continuation(last_chunk, 32000, descriptions=[text], progress=updateProgress, melody_wavs=(first_chunk), resample=False) duration -= segment_duration - overlap elif melody: sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0) print(melody.shape) if melody.dim() == 2: melody = melody[None] melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)] next_segment = MODEL.generate_with_chroma( descriptions=[text], melody_wavs=melody, melody_sample_rate=sr, progress=updateProgress ) duration -= segment_duration else: if output is None: next_segment = MODEL.generate(descriptions=[text], progress=updateProgress) duration -= segment_duration else: if first_chunk is None and MODEL.name == "melody" and recondition: first_chunk = output[:, :, :MODEL.lm.cfg.dataset.segment_duration*MODEL.sample_rate] last_chunk = output[:, :, -overlap*MODEL.sample_rate:] next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=updateProgress, melody_wavs=(first_chunk), resample=False) duration -= segment_duration - overlap if output is None: output = next_segment else: output = torch.cat([output[:, :, :-overlap*MODEL.sample_rate], next_segment], 2) output = output.detach().cpu().float()[0] with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) waveform_video = gr.make_waveform(file.name, bg_image=background, bg_color="#21b0fe" , bars_color=('#fe218b', '#fed700'), fg_alpha=1.0, bar_count=75) if background is None or len(background) == 0: random_string = generate_random_string(12) random_string = f"{random_string}.mp4" resize_video(waveform_video, random_string, 900, 300) waveform_video = random_string global UNLOAD_MODEL if UNLOAD_MODEL: MODEL = None torch.cuda.empty_cache() return waveform_video, seed def ui(**kwargs): with gr.Blocks() as interface: gr.Markdown( """ # MusicGen This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://arxiv.org/abs/2306.05284) """ ) if IS_SHARED_SPACE: gr.Markdown(""" ⚠ This Space doesn't work in this shared UI ⚠ Duplicate Space to use it privately, or use the public demo """) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True) sample = gr.Audio(source="upload", type="numpy", label="Music Sample (optional)", interactive=True) with gr.Row(): submit = gr.Button("Generate", variant="primary") gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): background = gr.Image(source="upload", label="Background", type="filepath", interactive=True) with gr.Row(): model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True) with gr.Row(): duration = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True) with gr.Row(): overlap = gr.Slider(minimum=1, maximum=29, value=5, step=1, label="Overlap", interactive=True) recondition = gr.Checkbox(False, label='Condition next chunks with the first chunk') with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number(label="Temperature", value=1.0, interactive=True) cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) with gr.Row(): seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True) gr.Button('\U0001f3b2\ufe0f').style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False) reuse_seed = gr.Button('\u267b\ufe0f').style(full_width=False) with gr.Column() as c: output = gr.Video(label="Generated Music") seed_used = gr.Number(label='Seed used', value=-1, interactive=False) reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False) submit.click(predict, inputs=[model, text, melody, sample, duration, topk, topp, temperature, cfg_coef, seed, overlap, recondition, background], outputs=[output, seed_used]) def update_recondition(name: str): enabled = name == 'melody' return recondition.update(interactive=enabled, value=None if enabled else False) model.change(fn=update_recondition, inputs=[model], outputs=[recondition]) gr.Examples( fn=predict, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", "melody" ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", "melody" ], [ "90s rock song with electric guitar and heavy drums", None, "medium" ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", "./assets/bach.mp3", "melody" ], [ "lofi slow bpm electro chill with organic samples", None, "medium", ], ], inputs=[text, melody, model], outputs=[output] ) gr.Markdown( """ ### More details The model will generate a short music extract based on the description you provided. You can generate up to 30 seconds of audio. We present 4 model variations: 1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. 2. Small -- a 300M transformer decoder conditioned on text only. 3. Medium -- a 1.5B transformer decoder conditioned on text only. 4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) When using `melody`, ou can optionaly provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. You can also use your own GPU or a Google Colab by following the instructions on our repo. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) for more details. """ ) # Show the interface launch_kwargs = {} username = kwargs.get('username') password = kwargs.get('password') server_port = kwargs.get('server_port', 0) inbrowser = kwargs.get('inbrowser', False) share = kwargs.get('share', False) server_name = kwargs.get('listen') launch_kwargs['server_name'] = server_name if username and password: launch_kwargs['auth'] = (username, password) if server_port > 0: launch_kwargs['server_port'] = server_port if inbrowser: launch_kwargs['inbrowser'] = inbrowser if share: launch_kwargs['share'] = share interface.queue().launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--listen', type=str, default='127.0.0.1', help='IP to listen on for connections to Gradio', ) parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) parser.add_argument( '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory' ) args = parser.parse_args() UNLOAD_MODEL = args.unload_model ui( username=args.username, password=args.password, inbrowser=args.inbrowser, server_port=args.server_port, share=args.share, listen=args.listen )