Spaces:
Runtime error
Runtime error
File size: 15,028 Bytes
b354d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import random
from tempfile import NamedTemporaryFile
import argparse
import time
import torch
import gradio as gr
import os
import numpy as np
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import convert_audio
import subprocess, random, string
MODEL = None
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
def interrupt():
global INTERRUPTED
INTERRUPTED = True
print('Interrupted!')
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
def resize_video(input_path, output_path, target_width, target_height):
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-i', input_path,
'-vf', f'scale={target_width}:{target_height}',
'-c:a', 'copy',
output_path
]
subprocess.run(ffmpeg_cmd)
def load_model(version):
print("Loading model", version)
return MusicGen.get_pretrained(version)
def predict(model, text, melody, sample, duration, topk, topp, temperature, cfg_coef, seed, overlap=5, recondition=True, background="./assets/background.png", progress=gr.Progress()):
global MODEL
global INTERRUPTED
INTERRUPTED = False
topk = int(topk)
if MODEL is None or MODEL.name != model:
MODEL = load_model(model)
if duration > MODEL.lm.cfg.dataset.segment_duration and melody is not None:
raise gr.Error("Generating music longer than 30 seconds with melody conditioning is not yet supported!")
output = None
first_chunk = None
total_samples = duration * 50 + 3
segment_duration = duration
if seed < 0:
seed = random.randint(0, 0xffff_ffff_ffff)
torch.manual_seed(seed)
predict.last_progress_update = time.monotonic()
while duration > 0:
if INTERRUPTED:
break
if output is None: # first pass of long or short song
if segment_duration > MODEL.lm.cfg.dataset.segment_duration:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
else:
segment_duration = duration
else: # next pass of long song
if duration + overlap < MODEL.lm.cfg.dataset.segment_duration:
segment_duration = duration + overlap
else:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}')
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=segment_duration,
)
def updateProgress(step: int, total: int):
now = time.monotonic()
if now - predict.last_progress_update > 1:
progress((total_samples - duration * 50 - 3 + step, total_samples))
predict.last_progress_update = now
if sample:
def normalize_audio(audio_data):
audio_data = audio_data.astype(np.float32)
max_value = np.max(np.abs(audio_data))
audio_data = audio_data / max_value
return audio_data
globalSR, sampleM = sample[0], sample[1]
sampleM = normalize_audio(sampleM)
sampleM = torch.from_numpy(sampleM).t()
if sampleM.dim() > 1:
sampleM = convert_audio(sampleM, globalSR, 32000, 1)
sampleM = sampleM.to(MODEL.device).float().unsqueeze(0)
if sampleM.dim() == 2:
sampleM = sampleM[None]
sample_length = sampleM.shape[sampleM.dim() - 1] / 32000
if output is None:
next_segment = sampleM
duration -= sample_length
else:
if first_chunk is None and MODEL.name == "melody" and recondition:
first_chunk = output[:, :,
:MODEL.lm.cfg.dataset.segment_duration*MODEL.sample_rate]
last_chunk = output[:, :, -overlap*32000:]
next_segment = MODEL.generate_continuation(last_chunk,
32000, descriptions=[text], progress=updateProgress,
melody_wavs=(first_chunk), resample=False)
duration -= segment_duration - overlap
elif melody:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
print(melody.shape)
if melody.dim() == 2:
melody = melody[None]
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
next_segment = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=melody,
melody_sample_rate=sr,
progress=updateProgress
)
duration -= segment_duration
else:
if output is None:
next_segment = MODEL.generate(descriptions=[text],
progress=updateProgress)
duration -= segment_duration
else:
if first_chunk is None and MODEL.name == "melody" and recondition:
first_chunk = output[:, :,
:MODEL.lm.cfg.dataset.segment_duration*MODEL.sample_rate]
last_chunk = output[:, :, -overlap*MODEL.sample_rate:]
next_segment = MODEL.generate_continuation(last_chunk,
MODEL.sample_rate, descriptions=[text],
progress=updateProgress, melody_wavs=(first_chunk), resample=False)
duration -= segment_duration - overlap
if output is None:
output = next_segment
else:
output = torch.cat([output[:, :, :-overlap*MODEL.sample_rate], next_segment], 2)
output = output.detach().cpu().float()[0]
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
waveform_video = gr.make_waveform(file.name, bg_image=background, bg_color="#21b0fe" , bars_color=('#fe218b', '#fed700'), fg_alpha=1.0, bar_count=75)
if background is None or len(background) == 0:
random_string = generate_random_string(12)
random_string = f"{random_string}.mp4"
resize_video(waveform_video, random_string, 900, 300)
waveform_video = random_string
global UNLOAD_MODEL
if UNLOAD_MODEL:
MODEL = None
torch.cuda.empty_cache()
return waveform_video, seed
def ui(**kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MusicGen
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://arxiv.org/abs/2306.05284)
"""
)
if IS_SHARED_SPACE:
gr.Markdown("""
⚠ This Space doesn't work in this shared UI ⚠
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
""")
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
sample = gr.Audio(source="upload", type="numpy", label="Music Sample (optional)", interactive=True)
with gr.Row():
submit = gr.Button("Generate", variant="primary")
gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
background = gr.Image(source="upload", label="Background", type="filepath", interactive=True)
with gr.Row():
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True)
with gr.Row():
overlap = gr.Slider(minimum=1, maximum=29, value=5, step=1, label="Overlap", interactive=True)
recondition = gr.Checkbox(False, label='Condition next chunks with the first chunk')
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
gr.Button('\U0001f3b2\ufe0f').style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False)
reuse_seed = gr.Button('\u267b\ufe0f').style(full_width=False)
with gr.Column() as c:
output = gr.Video(label="Generated Music")
seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False)
submit.click(predict, inputs=[model, text, melody, sample, duration, topk, topp, temperature, cfg_coef, seed, overlap, recondition, background], outputs=[output, seed_used])
def update_recondition(name: str):
enabled = name == 'melody'
return recondition.update(interactive=enabled, value=None if enabled else False)
model.change(fn=update_recondition, inputs=[model], outputs=[recondition])
gr.Examples(
fn=predict,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody"
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"melody"
],
[
"90s rock song with electric guitar and heavy drums",
None,
"medium"
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody"
],
[
"lofi slow bpm electro chill with organic samples",
None,
"medium",
],
],
inputs=[text, melody, model],
outputs=[output]
)
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
You can generate up to 30 seconds of audio.
We present 4 model variations:
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
2. Small -- a 300M transformer decoder conditioned on text only.
3. Medium -- a 1.5B transformer decoder conditioned on text only.
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
When using `melody`, ou can optionaly provide a reference audio from
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
"""
)
# Show the interface
launch_kwargs = {}
username = kwargs.get('username')
password = kwargs.get('password')
server_port = kwargs.get('server_port', 0)
inbrowser = kwargs.get('inbrowser', False)
share = kwargs.get('share', False)
server_name = kwargs.get('listen')
launch_kwargs['server_name'] = server_name
if username and password:
launch_kwargs['auth'] = (username, password)
if server_port > 0:
launch_kwargs['server_port'] = server_port
if inbrowser:
launch_kwargs['inbrowser'] = inbrowser
if share:
launch_kwargs['share'] = share
interface.queue().launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
)
args = parser.parse_args()
UNLOAD_MODEL = args.unload_model
ui(
username=args.username,
password=args.password,
inbrowser=args.inbrowser,
server_port=args.server_port,
share=args.share,
listen=args.listen
) |