File size: 2,265 Bytes
a3f48ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0eeab4
 
a3f48ee
 
 
 
 
 
a973e8e
a3f48ee
 
a973e8e
a3f48ee
 
 
 
 
9ad7c88
a3f48ee
 
 
c0eeab4
a3f48ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy()
    image = process(im)
    return (image, origin)

@spaces.GPU
def process(image):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image
  
def process_file(f):
    name_path = f.rsplit(".",1)[0]+".png"
    im = load_img(f, output_type="pil")
    im = im.convert("RGB")
    transparent = process(im)
    transparent.save(name_path)
    return name_path

slider1 = ImageSlider(label="RMBG-2.0", type="pil")
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
image = gr.Image(label="Upload an image")
image2 = gr.Image(label="Upload an image",type="filepath")
text = gr.Textbox(label="Paste an image URL")
png_file = gr.File(label="output png file")


chameleon = load_img("giraffe.jpg", output_type="pil")

url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"

tab1 = gr.Interface(
    fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image"
)

tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text")
tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")


demo = gr.TabbedInterface(
    [tab1, tab2,tab3], ["image", "text","png"], title="RMBG-2.0 for background removal"
)

if __name__ == "__main__":
    demo.launch(show_error=True)