LongWriter / app.py
zR
changed warning
8b7b2e1
raw
history blame
5.26 kB
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True)
from threading import Thread
import spaces
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
model = AutoModelForCausalLM.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@spaces.GPU(duration=280)
def predict(history, prompt, max_length, top_p, temperature):
stop = StopOnTokens()
messages = []
if prompt:
messages.append({"role": "system", "content": prompt})
for idx, (user_msg, model_msg) in enumerate(history):
if prompt and idx == 0:
continue
if idx == len(history) - 1 and not model_msg:
query = user_msg
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.build_chat_input(query, history=messages, role='user').input_ids.to(
next(model.parameters()).device)
streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True)
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1,
"eos_token_id": eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token and '<|user|>' not in new_token:
history[-1][1] += new_token
yield history
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
longwriter-glm4-9b Huggingface Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/THUDM/LongWriter-glm4-9b">🤗 Model Hub</a> |
<a href="https://github.com/THUDM/LongWriter">🌐 Github</a> |
<a href="https://arxiv.org/pdf/2408.07055">📜 arxiv </a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; margin-bottom: 20px; line-height: 1.5;">
<div style="color: black;">
⚠️ Due to the limitations of Huggingface ZERO GPUs, in order to output 5K characters in one go,
we need to request a 4-5 minute quota each time.
This will result in you only being able to use it once every 4 hours.
</div>
<br>
<div style="color: red;">
⚠️ After 4-5 minutes, it will result in a timeout error, regardless of whether the output is complete.
This is not caused by the model.<br>
If you plan to use it long-term, please consider deploying the model or forking this space yourself.
</div>
</div>
"""
)
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...(Example: Write a 10000-word China travel guide)", lines=10, container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit")
with gr.Column(scale=1):
prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
pBtn = gr.Button("Set Prompt")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 128000, value=10240, step=1.0, label="Maximum length(Input + Output)",
interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
def user(query, history):
return "", history + [[query, ""]]
def set_prompt(prompt_text):
return [[prompt_text, "Set prompt successfully"]]
pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
)
emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
demo.queue()
demo.launch()