Spaces:
Running
Running
File size: 13,915 Bytes
0c3ae0b 3b561b2 59005cf 5446ba7 8adced8 5446ba7 f3a2a3b bf6e615 5446ba7 bf6e615 58187c4 f3a2a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---
#@markdown #### Please select your language:
lang_select = "English" #@param ["English", "Spanish"]
if lang_select == "English":
lang = "en"
elif lang_select == "Spanish":
lang = "es"
else:
raise Exception("Language not supported.")
#@markdown ---
use_gpu = False #@param {type:"boolean"}
from fastapi import FastAPI
import json
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime
import glob
import ipywidgets as widgets
from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run
#_LOGGER = logging.getLogger("piper_train.infer_onnx")
import configparser
import os
class Translator:
def __init__(self):
self.configs = {}
def load_language(self, language_name):
if language_name not in self.configs:
config = configparser.ConfigParser()
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
self.configs[language_name] = config
def translate(self, language_name, string):
if language_name == "en":
return string
elif language_name not in self.configs:
self.load_language(language_name)
config = self.configs[language_name]
try:
return config.get("Strings", string)
except (configparser.NoOptionError, configparser.NoSectionError):
if string:
return string
else:
raise Exception("language engine error: This translation is corrupt!")
return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
onnx_models = glob.glob(path + '/*.onnx')
if len(onnx_models) > 1:
return onnx_models
elif len(onnx_models) == 1:
return onnx_models[0]
else:
return None
def main():
"""Main entry point"""
models_path = "/content/piper/src/python"
logging.basicConfig(level=logging.DEBUG)
providers = [
"CPUExecutionProvider"
if use_gpu is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = onnxruntime.SessionOptions()
model = None
onnx_models = detect_onnx_models(models_path)
speaker_selection = widgets.Dropdown(
options=[],
description=f'{lan.translate(lang, "Select speaker")}:',
layout={'visibility': 'hidden'}
)
if onnx_models is None:
if enhanced_accessibility:
playaudio("novoices")
raise Exception(lan.translate(lang, "No downloaded voice packages!"))
elif isinstance(onnx_models, str):
onnx_model = onnx_models
model, config = load_onnx(onnx_model, sess_options, providers)
if config["num_speakers"] > 1:
speaker_selection.options = config["speaker_id_map"].values()
speaker_selection.layout.visibility = 'visible'
preview_sid = 0
if enhanced_accessibility:
playaudio("multispeaker")
else:
speaker_selection.layout.visibility = 'hidden'
preview_sid = None
if enhanced_accessibility:
inferencing(
model,
config,
preview_sid,
lan.translate(
config["espeak"]["voice"][:2],
"Interface openned. Write your texts, configure the different synthesis options or download all the voices you want. Enjoy!"
)
)
else:
voice_model_names = []
for current in onnx_models:
voice_struct = current.split("/")[5]
voice_model_names.append(voice_struct)
if enhanced_accessibility:
playaudio("selectmodel")
selection = widgets.Dropdown(
options=voice_model_names,
description=f'{lan.translate(lang, "Select voice package")}:',
)
load_btn = widgets.Button(
description=lan.translate(lang, "Load it!")
)
config = None
def load_model(button):
nonlocal config
global onnx_model
nonlocal model
nonlocal models_path
selected_voice = selection.value
onnx_model = f"{models_path}/{selected_voice}"
model, config = load_onnx(onnx_model, sess_options, providers)
if enhanced_accessibility:
playaudio("loaded")
if config["num_speakers"] > 1:
speaker_selection.options = config["speaker_id_map"].values()
speaker_selection.layout.visibility = 'visible'
if enhanced_accessibility:
playaudio("multispeaker")
else:
speaker_selection.layout.visibility = 'hidden'
load_btn.on_click(load_model)
display(selection, load_btn)
display(speaker_selection)
speed_slider = widgets.FloatSlider(
value=1,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Rate scale"),
orientation='horizontal',
)
noise_scale_slider = widgets.FloatSlider(
value=0.667,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Phoneme noise scale"),
orientation='horizontal',
)
noise_scale_w_slider = widgets.FloatSlider(
value=1,
min=0.25,
max=4,
step=0.1,
description=lan.translate(lang, "Phoneme stressing scale"),
orientation='horizontal',
)
play = widgets.Checkbox(
value=True,
description=lan.translate(lang, "Auto-play"),
disabled=False
)
text_input = widgets.Text(
value='',
placeholder=f'{lan.translate(lang, "Enter your text here")}:',
description=lan.translate(lang, "Text to synthesize"),
layout=widgets.Layout(width='80%')
)
synthesize_button = widgets.Button(
description=lan.translate(lang, "Synthesize"),
button_style='success', # 'success', 'info', 'warning', 'danger' or ''
tooltip=lan.translate(lang, "Click here to synthesize the text."),
icon='check'
)
close_button = widgets.Button(
description=lan.translate(lang, "Exit"),
tooltip=lan.translate(lang, "Closes this GUI."),
icon='check'
)
def on_synthesize_button_clicked(b):
if model is None:
if enhanced_accessibility:
playaudio("nomodel")
raise Exception(lan.translate(lang, "You have not loaded any model from the list!"))
text = text_input.value
if config["num_speakers"] > 1:
sid = speaker_selection.value
else:
sid = None
rate = speed_slider.value
noise_scale = noise_scale_slider.value
noise_scale_w = noise_scale_w_slider.value
auto_play = play.value
inferencing(model, config, sid, text, rate, noise_scale, noise_scale_w, auto_play)
def on_close_button_clicked(b):
clear_output()
if enhanced_accessibility:
playaudio("exit")
synthesize_button.on_click(on_synthesize_button_clicked)
close_button.on_click(on_close_button_clicked)
display(text_input)
display(speed_slider)
display(noise_scale_slider)
display(noise_scale_w_slider)
display(play)
display(synthesize_button)
display(close_button)
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
_LOGGER.debug("Loading model from %s", model)
config = load_config(model)
model = onnxruntime.InferenceSession(
str(model),
sess_options=sess_options,
providers= providers
)
_LOGGER.info("Loaded model from %s", model)
return model, config
def load_config(model):
with open(f"{model}.json", "r") as file:
config = json.load(file)
return config
PAD = "_" # padding (0)
BOS = "^" # beginning of sentence
EOS = "$" # end of sentence
class PhonemeType(str, Enum):
ESPEAK = "espeak"
TEXT = "text"
def phonemize(config, text: str) -> List[List[str]]:
"""Text to phonemes grouped by sentence."""
if config["phoneme_type"] == PhonemeType.ESPEAK:
if config["espeak"]["voice"] == "ar":
# Arabic diacritization
# https://github.com/mush42/libtashkeel/
text = tashkeel_run(text)
return phonemize_espeak(text, config["espeak"]["voice"])
if config["phoneme_type"] == PhonemeType.TEXT:
return phonemize_codepoints(text)
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
"""Phonemes to ids."""
id_map = config["phoneme_id_map"]
ids: List[int] = list(id_map[BOS])
for phoneme in phonemes:
if phoneme not in id_map:
print("Missing phoneme from id map: %s", phoneme)
continue
ids.extend(id_map[phoneme])
ids.extend(id_map[PAD])
ids.extend(id_map[EOS])
return ids
def inferencing(model, config, sid, line, length_scale = 1, noise_scale = 0.667, noise_scale_w = 0.8, auto_play=True):
audios = []
if config["phoneme_type"] == "PhonemeType.ESPEAK":
config["phoneme_type"] = "espeak"
text = phonemize(config, line)
for phonemes in text:
phoneme_ids = phonemes_to_ids(config, phonemes)
num_speakers = config["num_speakers"]
if num_speakers == 1:
speaker_id = None # for now
else:
speaker_id = sid
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[noise_scale, length_scale, noise_scale_w],
dtype=np.float32,
)
sid = None
if speaker_id is not None:
sid = np.array([speaker_id], dtype=np.int64)
audio = model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": sid,
},
)[0].squeeze((0, 1))
audio = audio_float_to_int16(audio.squeeze())
audios.append(audio)
merged_audio = np.concatenate(audios)
sample_rate = config["audio"]["sample_rate"]
display(Markdown(f"{line}"))
display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
# Create an instance of the FastAPI class
app = main()
# Define a route for the root endpoint
@app.get("/")
def read_root():
return {"message": "Hello, World!"} |