Pipertts / app.py
Gregniuki's picture
Update app.py
80162ec
raw
history blame
14.3 kB
enhanced_accessibility = False #@param {type:"boolean"}
#@markdown ---
#@markdown #### Please select your language:
#lang_select = "English" #@param ["English", "Spanish"]
#if lang_select == "English":
# lang = "en"
#elif lang_select == "Spanish":
# lang = "es"
#else:
# raise Exception("Language not supported.")
#@markdown ---
lang = "en"
use_gpu = False #@param {type:"boolean"}
from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.templating import Jinja2Templates
import logging
app = FastAPI()
templates = Jinja2Templates(directory="templates")
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Mock data for your interface
data = {
"speaker_options": ["Speaker 1", "Speaker 2", "Speaker 3"],
"default_speaker": "Speaker 1",
}
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("interface.html", {"request": request, "data": data})
import json
import logging
import math
import sys
from pathlib import Path
from enum import Enum
from typing import Iterable, List, Optional, Union
import numpy as np
import onnxruntime
import glob
import ipywidgets as widgets
from pydub import AudioSegment
import tempfile
from IPython.display import display, Audio, Markdown, clear_output
from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run
_LOGGER = logging.getLogger("piper_train.infer_onnx")
import os
#if not os.path.exists("./content/piper/src/python/lng"):
# import subprocess
# command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng"
# subprocess.run(command, shell=True)
import sys
#sys.path.append('/content/piper/notebooks')
sys.path.append('./content/piper/src/python')
import configparser
class Translator:
def __init__(self):
self.configs = {}
def load_language(self, language_name):
if language_name not in self.configs:
config = configparser.ConfigParser()
config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang"))
self.configs[language_name] = config
def translate(self, language_name, string):
if language_name == "en":
return string
elif language_name not in self.configs:
self.load_language(language_name)
config = self.configs[language_name]
try:
return config.get("Strings", string)
except (configparser.NoOptionError, configparser.NoSectionError):
if string:
return string
else:
raise Exception("language engine error: This translation is corrupt!")
return 0
#from translator import *
lan = Translator()
def detect_onnx_models(path):
onnx_models = glob.glob(path + '/*.onnx')
if len(onnx_models) > 1:
return onnx_models
elif len(onnx_models) == 1:
return onnx_models[0]
else:
return None
renamed_audio_file = None
#@app.post("/synthesize")
#@app.post("/", response_class=FileResponse)
@app.post("/", response_class=HTMLResponse)
async def main(
request: Request,
text_input: str = Form(...),
speaker: str = Form(...),
speed_slider: float = Form(1.0),
noise_scale_slider: float = Form(0.667),
noise_scale_w_slider: float = Form(1.0),
play: bool = Form(True)
):
"""Main entry point"""
sys.path.append('./content/piper/src/python')
models_path = "./content/piper/src/python"
logging.basicConfig(level=logging.DEBUG)
providers = [
"CPUExecutionProvider"
if use_gpu is False
else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
]
sess_options = onnxruntime.SessionOptions()
model = None
onnx_models = detect_onnx_models(models_path)
speaker_selection = widgets.Dropdown(
options=[],
description=f'{lan.translate(lang, "Select speaker")}:',
layout={'visibility': 'hidden'}
)
if onnx_models is None:
if enhanced_accessibility:
playaudio("novoices")
raise Exception(lan.translate(lang, "No downloaded voice packages!"))
elif isinstance(onnx_models, str):
onnx_model = onnx_models
model, config = load_onnx(onnx_model, sess_options, providers)
print("nuber of speakers = ", config["num_speakers"])
print("hello2")
rate = speed_slider.value
noise_scale = noise_scale_slider.value
noise_scale_w = noise_scale_w_slider.value
auto_play = play.value
audio = inferencing(model, config, sid, text_input.value, speed_slider.value, noise_scale_slider.value, noise_scale_w_slider, auto_play)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio.export(temp_audio_file.name, format="mp3")
# Rename the temporary audio file based on the text input
global renamed_audio_file
renamed_audio_file = os.path.join(tempfile.gettempdir(), f"{text_input}.mp3")
os.rename(temp_audio_file.name, renamed_audio_file)
if config["num_speakers"] > 1:
speaker_selection.options = config["speaker_id_map"].values()
speaker_selection.layout.visibility = 'visible'
preview_sid = 0
else:
speaker_selection.layout.visibility = 'hidden'
preview_sid = None
else:
voice_model_names = []
for current in onnx_models:
voice_struct = current.split("/")[5]
voice_model_names.append(voice_struct)
# if enhanced_accessibility:
# playaudio("selectmodel")
# selection = widgets.Dropdown(
# options=voice_model_names,
# description=f'{lan.translate(lang, "Select voice package")}:',
# )
# load_btn = widgets.Button(
# description=lan.translate(lang, "Load it!")
# )
# config = None
# def load_model(button):
# nonlocal config
# global onnx_model
# nonlocal model
# nonlocal models_path
# selected_voice = selection.value
# onnx_model = f"{models_path}/{selected_voice}"
# model, config = load_onnx(onnx_model, sess_options, providers)
# if enhanced_accessibility:
# playaudio("loaded")
# if config["num_speakers"] > 1:
# speaker_selection.options = config["speaker_id_map"].values()
# speaker_selection.layout.visibility = 'visible'
# if enhanced_accessibility:
# playaudio("multispeaker")
# else:
# speaker_selection.layout.visibility = 'hidden'
# load_btn.on_click(load_model)
# display(selection, load_btn)
# display(speaker_selection)
print("hello")
if model is None:
if enhanced_accessibility:
playaudio("nomodel")
raise Exception(lan.translate(lang, "You have not loaded any model from the list!"))
text = text_input.value
if config["num_speakers"] > 1:
sid = 0
else:
sid = None
# Save the audio as a temporary WAV file
return templates.TemplateResponse("interface.html", {"request": request, "audio_file": renamed_audio_file, "data": data})
# return {"message": f"Text to synthesize: {text_input}, Speed: {speed_slider}, Play: {play}"}
def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]):
_LOGGER.debug("Loading model from %s", model)
config = load_config(model)
model = onnxruntime.InferenceSession(
str(model),
sess_options=sess_options,
providers= providers
)
_LOGGER.info("Loaded model from %s", model)
return model, config
def load_config(model):
with open(f"{model}.json", "r") as file:
config = json.load(file)
return config
PAD = "_" # padding (0)
BOS = "^" # beginning of sentence
EOS = "$" # end of sentence
class PhonemeType(str, Enum):
ESPEAK = "espeak"
TEXT = "text"
def phonemize(config, text: str) -> List[List[str]]:
"""Text to phonemes grouped by sentence."""
if config["phoneme_type"] == PhonemeType.ESPEAK:
if config["espeak"]["voice"] == "ar":
# Arabic diacritization
# https://github.com/mush42/libtashkeel/
text = tashkeel_run(text)
return phonemize_espeak(text, config["espeak"]["voice"])
if config["phoneme_type"] == PhonemeType.TEXT:
return phonemize_codepoints(text)
raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}')
def phonemes_to_ids(config, phonemes: List[str]) -> List[int]:
"""Phonemes to ids."""
id_map = config["phoneme_id_map"]
ids: List[int] = list(id_map[BOS])
for phoneme in phonemes:
if phoneme not in id_map:
print("Missing phoneme from id map: %s", phoneme)
continue
ids.extend(id_map[phoneme])
ids.extend(id_map[PAD])
ids.extend(id_map[EOS])
return ids
def inferencing(model, config, sid, line, length_scale = 1, noise_scale = 0.667, noise_scale_w = 0.8, auto_play=True):
audios = []
if config["phoneme_type"] == "PhonemeType.ESPEAK":
config["phoneme_type"] = "espeak"
text = phonemize(config, line)
for phonemes in text:
phoneme_ids = phonemes_to_ids(config, phonemes)
num_speakers = config["num_speakers"]
if num_speakers == 1:
speaker_id = None # for now
else:
speaker_id = sid
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[noise_scale, length_scale, noise_scale_w],
dtype=np.float32,
)
sid = None
if speaker_id is not None:
sid = np.array([speaker_id], dtype=np.int64)
audio = model.run(
None,
{
"input": text,
"input_lengths": text_lengths,
"scales": scales,
"sid": sid,
},
)[0].squeeze((0, 1))
audio = audio_float_to_int16(audio.squeeze())
audios.append(audio)
merged_audio = np.concatenate(audios)
sample_rate = config["audio"]["sample_rate"]
temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav")
sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"])
audio = AudioSegment.from_mp3(temp_audio_path)
return audio
# return FileResponse(temp_audio_path)
# Return the audio file as a FastAPI response
# display(Markdown(f"{line}"))
# display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play))
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
#@app.get("/")
#async def read_root(request: Request):
# return templates.TemplateResponse("interface.html", {"request": request})
if __name__ == "__main__":
# main()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# main()
# pass
# app()
# Create an instance of the FastAPI class
#app = main()
# Define a route for the root endpoint
#def read_root():
# return {"message": "Hello, World!"}