Upload model_ecapa_tdnn.py
Browse files- model/model_ecapa_tdnn.py +268 -0
model/model_ecapa_tdnn.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# just for speaker similarity evaluation, third-party code
|
2 |
+
|
3 |
+
# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
|
4 |
+
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
5 |
+
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
''' Res2Conv1d + BatchNorm1d + ReLU
|
13 |
+
'''
|
14 |
+
|
15 |
+
class Res2Conv1dReluBn(nn.Module):
|
16 |
+
'''
|
17 |
+
in_channels == out_channels == channels
|
18 |
+
'''
|
19 |
+
|
20 |
+
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
|
21 |
+
super().__init__()
|
22 |
+
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
23 |
+
self.scale = scale
|
24 |
+
self.width = channels // scale
|
25 |
+
self.nums = scale if scale == 1 else scale - 1
|
26 |
+
|
27 |
+
self.convs = []
|
28 |
+
self.bns = []
|
29 |
+
for i in range(self.nums):
|
30 |
+
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
|
31 |
+
self.bns.append(nn.BatchNorm1d(self.width))
|
32 |
+
self.convs = nn.ModuleList(self.convs)
|
33 |
+
self.bns = nn.ModuleList(self.bns)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
out = []
|
37 |
+
spx = torch.split(x, self.width, 1)
|
38 |
+
for i in range(self.nums):
|
39 |
+
if i == 0:
|
40 |
+
sp = spx[i]
|
41 |
+
else:
|
42 |
+
sp = sp + spx[i]
|
43 |
+
# Order: conv -> relu -> bn
|
44 |
+
sp = self.convs[i](sp)
|
45 |
+
sp = self.bns[i](F.relu(sp))
|
46 |
+
out.append(sp)
|
47 |
+
if self.scale != 1:
|
48 |
+
out.append(spx[self.nums])
|
49 |
+
out = torch.cat(out, dim=1)
|
50 |
+
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
''' Conv1d + BatchNorm1d + ReLU
|
55 |
+
'''
|
56 |
+
|
57 |
+
class Conv1dReluBn(nn.Module):
|
58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
|
59 |
+
super().__init__()
|
60 |
+
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
61 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.bn(F.relu(self.conv(x)))
|
65 |
+
|
66 |
+
|
67 |
+
''' The SE connection of 1D case.
|
68 |
+
'''
|
69 |
+
|
70 |
+
class SE_Connect(nn.Module):
|
71 |
+
def __init__(self, channels, se_bottleneck_dim=128):
|
72 |
+
super().__init__()
|
73 |
+
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
74 |
+
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
out = x.mean(dim=2)
|
78 |
+
out = F.relu(self.linear1(out))
|
79 |
+
out = torch.sigmoid(self.linear2(out))
|
80 |
+
out = x * out.unsqueeze(2)
|
81 |
+
|
82 |
+
return out
|
83 |
+
|
84 |
+
|
85 |
+
''' SE-Res2Block of the ECAPA-TDNN architecture.
|
86 |
+
'''
|
87 |
+
|
88 |
+
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
89 |
+
# return nn.Sequential(
|
90 |
+
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
91 |
+
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
92 |
+
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
93 |
+
# SE_Connect(channels)
|
94 |
+
# )
|
95 |
+
|
96 |
+
class SE_Res2Block(nn.Module):
|
97 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
|
98 |
+
super().__init__()
|
99 |
+
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
100 |
+
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
|
101 |
+
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
102 |
+
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
103 |
+
|
104 |
+
self.shortcut = None
|
105 |
+
if in_channels != out_channels:
|
106 |
+
self.shortcut = nn.Conv1d(
|
107 |
+
in_channels=in_channels,
|
108 |
+
out_channels=out_channels,
|
109 |
+
kernel_size=1,
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
residual = x
|
114 |
+
if self.shortcut:
|
115 |
+
residual = self.shortcut(x)
|
116 |
+
|
117 |
+
x = self.Conv1dReluBn1(x)
|
118 |
+
x = self.Res2Conv1dReluBn(x)
|
119 |
+
x = self.Conv1dReluBn2(x)
|
120 |
+
x = self.SE_Connect(x)
|
121 |
+
|
122 |
+
return x + residual
|
123 |
+
|
124 |
+
|
125 |
+
''' Attentive weighted mean and standard deviation pooling.
|
126 |
+
'''
|
127 |
+
|
128 |
+
class AttentiveStatsPool(nn.Module):
|
129 |
+
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
|
130 |
+
super().__init__()
|
131 |
+
self.global_context_att = global_context_att
|
132 |
+
|
133 |
+
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
134 |
+
if global_context_att:
|
135 |
+
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
|
136 |
+
else:
|
137 |
+
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
|
138 |
+
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
|
142 |
+
if self.global_context_att:
|
143 |
+
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
144 |
+
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
|
145 |
+
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
146 |
+
else:
|
147 |
+
x_in = x
|
148 |
+
|
149 |
+
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
150 |
+
alpha = torch.tanh(self.linear1(x_in))
|
151 |
+
# alpha = F.relu(self.linear1(x_in))
|
152 |
+
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
153 |
+
mean = torch.sum(alpha * x, dim=2)
|
154 |
+
residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2
|
155 |
+
std = torch.sqrt(residuals.clamp(min=1e-9))
|
156 |
+
return torch.cat([mean, std], dim=1)
|
157 |
+
|
158 |
+
|
159 |
+
class ECAPA_TDNN(nn.Module):
|
160 |
+
def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False,
|
161 |
+
feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
162 |
+
super().__init__()
|
163 |
+
|
164 |
+
self.feat_type = feat_type
|
165 |
+
self.feature_selection = feature_selection
|
166 |
+
self.update_extract = update_extract
|
167 |
+
self.sr = sr
|
168 |
+
|
169 |
+
torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
|
170 |
+
try:
|
171 |
+
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
|
172 |
+
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source='local', config_path=config_path)
|
173 |
+
except:
|
174 |
+
self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type)
|
175 |
+
|
176 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"):
|
177 |
+
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
|
178 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"):
|
179 |
+
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
|
180 |
+
|
181 |
+
self.feat_num = self.get_feat_num()
|
182 |
+
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
183 |
+
|
184 |
+
if feat_type != 'fbank' and feat_type != 'mfcc':
|
185 |
+
freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer']
|
186 |
+
for name, param in self.feature_extract.named_parameters():
|
187 |
+
for freeze_val in freeze_list:
|
188 |
+
if freeze_val in name:
|
189 |
+
param.requires_grad = False
|
190 |
+
break
|
191 |
+
|
192 |
+
if not self.update_extract:
|
193 |
+
for param in self.feature_extract.parameters():
|
194 |
+
param.requires_grad = False
|
195 |
+
|
196 |
+
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
197 |
+
# self.channels = [channels] * 4 + [channels * 3]
|
198 |
+
self.channels = [channels] * 4 + [1536]
|
199 |
+
|
200 |
+
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
|
201 |
+
self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128)
|
202 |
+
self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128)
|
203 |
+
self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128)
|
204 |
+
|
205 |
+
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
206 |
+
cat_channels = channels * 3
|
207 |
+
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
208 |
+
self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att)
|
209 |
+
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
210 |
+
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
211 |
+
|
212 |
+
|
213 |
+
def get_feat_num(self):
|
214 |
+
self.feature_extract.eval()
|
215 |
+
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
|
216 |
+
with torch.no_grad():
|
217 |
+
features = self.feature_extract(wav)
|
218 |
+
select_feature = features[self.feature_selection]
|
219 |
+
if isinstance(select_feature, (list, tuple)):
|
220 |
+
return len(select_feature)
|
221 |
+
else:
|
222 |
+
return 1
|
223 |
+
|
224 |
+
def get_feat(self, x):
|
225 |
+
if self.update_extract:
|
226 |
+
x = self.feature_extract([sample for sample in x])
|
227 |
+
else:
|
228 |
+
with torch.no_grad():
|
229 |
+
if self.feat_type == 'fbank' or self.feat_type == 'mfcc':
|
230 |
+
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
|
231 |
+
else:
|
232 |
+
x = self.feature_extract([sample for sample in x])
|
233 |
+
|
234 |
+
if self.feat_type == 'fbank':
|
235 |
+
x = x.log()
|
236 |
+
|
237 |
+
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
238 |
+
x = x[self.feature_selection]
|
239 |
+
if isinstance(x, (list, tuple)):
|
240 |
+
x = torch.stack(x, dim=0)
|
241 |
+
else:
|
242 |
+
x = x.unsqueeze(0)
|
243 |
+
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
244 |
+
x = (norm_weights * x).sum(dim=0)
|
245 |
+
x = torch.transpose(x, 1, 2) + 1e-6
|
246 |
+
|
247 |
+
x = self.instance_norm(x)
|
248 |
+
return x
|
249 |
+
|
250 |
+
def forward(self, x):
|
251 |
+
x = self.get_feat(x)
|
252 |
+
|
253 |
+
out1 = self.layer1(x)
|
254 |
+
out2 = self.layer2(out1)
|
255 |
+
out3 = self.layer3(out2)
|
256 |
+
out4 = self.layer4(out3)
|
257 |
+
|
258 |
+
out = torch.cat([out2, out3, out4], dim=1)
|
259 |
+
out = F.relu(self.conv(out))
|
260 |
+
out = self.bn(self.pooling(out))
|
261 |
+
out = self.linear(out)
|
262 |
+
|
263 |
+
return out
|
264 |
+
|
265 |
+
|
266 |
+
def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
267 |
+
return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim,
|
268 |
+
feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path)
|