Spaces:
Runtime error
Runtime error
v0.2
Browse files- .gitattributes +2 -0
- app.py +69 -16
- babel_imagenet-298.json +0 -0
- bin_image.png +0 -0
- data/images.json +0 -0
- data/precomputed_results.json +0 -0
- images.json +0 -0
- language_mapping.json +300 -0
- precomputed_results.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/precomputed_results.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
precomputed_results.json filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -56,14 +56,15 @@ def change_language(lang, randomize_imgs, randomize_labels):
|
|
56 |
text_features = None
|
57 |
correct_text = gr.Text(f"Correct was: ''. Question 1/{len(babel_imagenet[lang][0])} ", label="Game")
|
58 |
player_score_text = gr.Text(f"Your choice: (Score: 0) ", label="Player")
|
59 |
-
clip_score_text = gr.Text(f"
|
60 |
|
61 |
return text_features, -1, class_order, correct_text, player_score_text, clip_score_text, 0, 0
|
62 |
|
63 |
-
def select(idx, lang, choice, correct, model_choice, player_score, clip_score):
|
64 |
# checks if answer choice is correct and updated scores
|
65 |
correct_name, correct_value = correct
|
66 |
model_choice_name, model_choice_value = model_choice
|
|
|
67 |
|
68 |
player_correct = choice == correct_value
|
69 |
model_correct = model_choice_value == correct_value
|
@@ -72,8 +73,8 @@ def select(idx, lang, choice, correct, model_choice, player_score, clip_score):
|
|
72 |
clip_score = clip_score + int(model_correct)
|
73 |
|
74 |
correct_text = gr.Text(f"Correct was: '{correct_name}'. Question {idx+1}/{len(babel_imagenet[lang][0])} ", label="Game")
|
75 |
-
player_score_text = gr.Text(f"Your choice: {'β
' if player_correct else 'β'} (Score: {player_score}) ", label="Player")
|
76 |
-
clip_score_text = gr.Text(f"
|
77 |
|
78 |
return correct_text, player_score_text, clip_score_text, player_score, clip_score
|
79 |
|
@@ -131,9 +132,57 @@ def prepare(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
|
131 |
next_radio = gr.Radio(choices=choice_values, interactive=True, label="Select the correct answer:", value=None)
|
132 |
next_image = gr.Image(value=img_url, width=IMG_WIDTH, height=IMG_WIDTH, label="What class does this image belong to?")
|
133 |
|
134 |
-
return next_radio, next_image, raw_idx, correct_choice, model_choice
|
135 |
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
with (gr.Blocks(title="Babel-ImageNet Quiz") as demo):
|
139 |
|
@@ -142,6 +191,7 @@ with (gr.Blocks(title="Babel-ImageNet Quiz") as demo):
|
|
142 |
player_score = gr.State(0)
|
143 |
clip_score = gr.State(0)
|
144 |
class_order = gr.State([])
|
|
|
145 |
|
146 |
text_embeddings = gr.State(None)
|
147 |
correct_choice = gr.State(["nan", 0]) # 0, 1, 2, 3
|
@@ -153,7 +203,7 @@ with (gr.Blocks(title="Babel-ImageNet Quiz") as demo):
|
|
153 |
|
154 |
<small>by Gregor Geigle, WΓΌNLP & Computer Vision Lab, University of WΓΌrzburg</small>
|
155 |
|
156 |
-
In this quiz, you play against a CLIP model and try to correctly classify the images over the 1000 ImageNet classes (in English) or over our (partial) Babel-ImageNet translations of those classes.
|
157 |
Select your language, click 'Start' and start guessing! We'll keep track of your score and of your opponent's.
|
158 |
> **Disclaimer:** Translations and images are derived automatically and can be wrong, unusual, or mismatch! This is supposed to be a fun game to explore the dataset and see how a CLIP model would answer the questions and not a product.
|
159 |
> We do *not* use the official ImageNet images. Instead, we use images linked in BabelNet for each class, which are often from Wikipedia and have not been checked for suitability.
|
@@ -164,7 +214,7 @@ Select your language, click 'Start' and start guessing! We'll keep track of your
|
|
164 |
<summary> <b> FAQ</b> (click me to read)</summary>
|
165 |
<p><b>'Over 1000 classes? I just see 4.'</b> True, you have it easier and you only have to chose between 4 classes. These are the top-4 picks of your opponent (+ the correct class if they are wrong). Your opponent has it harder: they have to deal with all classes.</p>
|
166 |
<p><b>'Who is my opponent?'</b> Your opponent CLIP model is [mSigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-i18n-256), a powerful but small multilingual model with only 370M parameters.</p>
|
167 |
-
<p><b>'My game crashed/ I got an error!'</b> This usually happens because of problems with the image URLs.
|
168 |
</details>
|
169 |
""")
|
170 |
with gr.Row():
|
@@ -177,7 +227,7 @@ Select your language, click 'Start' and start guessing! We'll keep track of your
|
|
177 |
With CLIP, you can search through, filter, or group large image datasets. The image encoder in CLIP also powers many of the large vision language models like Llava 1.5!
|
178 |
</p>
|
179 |
<p>
|
180 |
-
Your opponent CLIP model in this quiz does 'zero-shot image classification': We encode all possible class labels and the image and we check which class is most similar; this is then the class chosen by CLIP.
|
181 |
</p>
|
182 |
</details>
|
183 |
""")
|
@@ -209,8 +259,8 @@ Select your language, click 'Start' and start guessing! We'll keep track of your
|
|
209 |
# language select dropdown
|
210 |
with gr.Row():
|
211 |
language_select = gr.Dropdown(choices=main_language_values, value="EN", interactive=True, label="Select your language:")
|
212 |
-
randomize_classes = gr.Checkbox(label="Randomize class order (or play in canonic order)")
|
213 |
-
randomize_images = gr.Checkbox(label="Randomize images (if unchecked, will always show the same image). Other images might be less relevant.")
|
214 |
start_btn = gr.Button(value="Start", variant="primary")
|
215 |
|
216 |
# quiz area
|
@@ -224,26 +274,29 @@ Select your language, click 'Start' and start guessing! We'll keep track of your
|
|
224 |
# with gr.Row():
|
225 |
correct_text = gr.Text("Please click start to begin.")
|
226 |
player_score_text = gr.Text(f"Player score: 0")
|
227 |
-
clip_score_text = gr.Text(f"
|
228 |
-
|
229 |
|
230 |
-
# Explanation area
|
231 |
|
232 |
|
233 |
|
234 |
options.select(fn=select,
|
235 |
-
inputs=[class_idx, language_select, options, correct_choice, model_choice, player_score, clip_score],
|
236 |
outputs=[correct_text, player_score_text, clip_score_text, player_score, clip_score]
|
237 |
).then(fn=prepare,
|
238 |
inputs=[class_idx, language_select, text_embeddings, class_order, randomize_images],
|
239 |
-
outputs=[options, image, class_idx, correct_choice, model_choice])
|
240 |
|
241 |
start_btn.click(fn=change_language,
|
242 |
inputs=[language_select, randomize_images, randomize_classes],
|
243 |
outputs=[text_embeddings, class_idx, class_order, correct_text, player_score_text, clip_score_text, player_score, clip_score]
|
244 |
).then(fn=prepare,
|
245 |
inputs=[class_idx, language_select, text_embeddings, class_order, randomize_images],
|
246 |
-
outputs=[options, image, class_idx, correct_choice, model_choice])
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# initialization
|
249 |
# demo.load(fn=change_language,
|
|
|
56 |
text_features = None
|
57 |
correct_text = gr.Text(f"Correct was: ''. Question 1/{len(babel_imagenet[lang][0])} ", label="Game")
|
58 |
player_score_text = gr.Text(f"Your choice: (Score: 0) ", label="Player")
|
59 |
+
clip_score_text = gr.Text(f"mSigLIP chose: '' (Score: 0)", label="Opponent")
|
60 |
|
61 |
return text_features, -1, class_order, correct_text, player_score_text, clip_score_text, 0, 0
|
62 |
|
63 |
+
def select(idx, lang, choice, correct, model_choice, player_score, clip_score, choices):
|
64 |
# checks if answer choice is correct and updated scores
|
65 |
correct_name, correct_value = correct
|
66 |
model_choice_name, model_choice_value = model_choice
|
67 |
+
player_choice = choices[choice][0]
|
68 |
|
69 |
player_correct = choice == correct_value
|
70 |
model_correct = model_choice_value == correct_value
|
|
|
73 |
clip_score = clip_score + int(model_correct)
|
74 |
|
75 |
correct_text = gr.Text(f"Correct was: '{correct_name}'. Question {idx+1}/{len(babel_imagenet[lang][0])} ", label="Game")
|
76 |
+
player_score_text = gr.Text(f"Your choice: {player_choice} {'β
' if player_correct else 'β'} (Score: {player_score}) ", label="Player")
|
77 |
+
clip_score_text = gr.Text(f"mSigLIP chose: '{model_choice_name}' {'β
' if model_correct else 'β'} (Score: {clip_score})", label="Opponent")
|
78 |
|
79 |
return correct_text, player_score_text, clip_score_text, player_score, clip_score
|
80 |
|
|
|
132 |
next_radio = gr.Radio(choices=choice_values, interactive=True, label="Select the correct answer:", value=None)
|
133 |
next_image = gr.Image(value=img_url, width=IMG_WIDTH, height=IMG_WIDTH, label="What class does this image belong to?")
|
134 |
|
135 |
+
return next_radio, next_image, raw_idx, correct_choice, model_choice, choice_values
|
136 |
|
137 |
|
138 |
+
def reroll(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
139 |
+
# prepared next question, loads image, and computes choices
|
140 |
+
|
141 |
+
idx = class_order[raw_idx]
|
142 |
+
lang_class_idxs = babel_imagenet[lang][0]
|
143 |
+
class_idx = lang_class_idxs[idx]
|
144 |
+
|
145 |
+
img_idx = 0
|
146 |
+
if randomize_images:
|
147 |
+
img_idx = np.random.choice(len(babelnet_images[class_idx]))
|
148 |
+
img_url = babelnet_images[class_idx][img_idx]["url"]
|
149 |
+
class_labels = babel_imagenet[lang][1] if lang != "EN" else openai_en_classes
|
150 |
+
|
151 |
+
if not precomputed_results:
|
152 |
+
try:
|
153 |
+
image_input = transform(Image.open(requests.get(img_url, stream=True, headers=request_header).raw).convert("RGB")).unsqueeze(0).to(device)
|
154 |
+
with torch.no_grad():
|
155 |
+
image_features = model.encode_image(image_input).float()
|
156 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
157 |
+
except:
|
158 |
+
gr.Warning("There is a problem with the next class. Skipping it.")
|
159 |
+
return prepare(raw_idx, lang, text_embeddings, class_order, randomize_images)
|
160 |
+
|
161 |
+
similarity = (text_embeddings @ image_features.cpu().numpy().T).squeeze()
|
162 |
+
choices = np.argsort(similarity)[-4:].tolist()
|
163 |
+
else:
|
164 |
+
choices = list(reversed(precomputed_results[lang][idx][img_idx])) # precomputing script uses torch.topk which sorts in reverse here
|
165 |
+
if idx not in choices:
|
166 |
+
choices = [idx] + choices[1:]
|
167 |
+
model_choice_idx = choices[-1]
|
168 |
+
|
169 |
+
numpy.random.shuffle(choices)
|
170 |
+
|
171 |
+
choice_names = [class_labels[idx] for idx in choices]
|
172 |
+
choice_values = [0, 1, 2, 3]
|
173 |
+
|
174 |
+
model_choice_idx = choices.index(model_choice_idx)
|
175 |
+
model_choice = [choice_names[model_choice_idx], choice_values[model_choice_idx]]
|
176 |
+
correct_choice_idx = choices.index(idx)
|
177 |
+
correct_choice = [choice_names[correct_choice_idx], choice_values[correct_choice_idx]]
|
178 |
+
|
179 |
+
choice_values = list(zip(choice_names, choice_values))
|
180 |
+
|
181 |
+
next_radio = gr.Radio(choices=choice_values, interactive=True, label="Select the correct answer:", value=None)
|
182 |
+
next_image = gr.Image(value=img_url, width=IMG_WIDTH, height=IMG_WIDTH, label="What class does this image belong to?")
|
183 |
+
|
184 |
+
return next_radio, next_image, raw_idx, correct_choice, model_choice, choice_values
|
185 |
+
|
186 |
|
187 |
with (gr.Blocks(title="Babel-ImageNet Quiz") as demo):
|
188 |
|
|
|
191 |
player_score = gr.State(0)
|
192 |
clip_score = gr.State(0)
|
193 |
class_order = gr.State([])
|
194 |
+
choices = gr.State([])
|
195 |
|
196 |
text_embeddings = gr.State(None)
|
197 |
correct_choice = gr.State(["nan", 0]) # 0, 1, 2, 3
|
|
|
203 |
|
204 |
<small>by Gregor Geigle, WΓΌNLP & Computer Vision Lab, University of WΓΌrzburg</small>
|
205 |
|
206 |
+
In this quiz, you play against a CLIP model (specifically: [mSigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-i18n-256), a multilingual [SigLIP](https://arxiv.org/abs/2303.15343) model) and try to correctly classify the images over the 1000 ImageNet classes (in English) or over our (partial) Babel-ImageNet translations of those classes.
|
207 |
Select your language, click 'Start' and start guessing! We'll keep track of your score and of your opponent's.
|
208 |
> **Disclaimer:** Translations and images are derived automatically and can be wrong, unusual, or mismatch! This is supposed to be a fun game to explore the dataset and see how a CLIP model would answer the questions and not a product.
|
209 |
> We do *not* use the official ImageNet images. Instead, we use images linked in BabelNet for each class, which are often from Wikipedia and have not been checked for suitability.
|
|
|
214 |
<summary> <b> FAQ</b> (click me to read)</summary>
|
215 |
<p><b>'Over 1000 classes? I just see 4.'</b> True, you have it easier and you only have to chose between 4 classes. These are the top-4 picks of your opponent (+ the correct class if they are wrong). Your opponent has it harder: they have to deal with all classes.</p>
|
216 |
<p><b>'Who is my opponent?'</b> Your opponent CLIP model is [mSigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-i18n-256), a powerful but small multilingual model with only 370M parameters.</p>
|
217 |
+
<p><b>'My game crashed/ I got an error!'</b> This usually happens because of problems with the image URLs. You can try the button to reroll the image or start a new round by clicking the 'Start' button again.</p>
|
218 |
</details>
|
219 |
""")
|
220 |
with gr.Row():
|
|
|
227 |
With CLIP, you can search through, filter, or group large image datasets. The image encoder in CLIP also powers many of the large vision language models like Llava 1.5!
|
228 |
</p>
|
229 |
<p>
|
230 |
+
Your opponent CLIP model [mSigLIP](https://arxiv.org/abs/2303.15343) in this quiz does 'zero-shot image classification': We encode all possible class labels and the image and we check which class is most similar; this is then the class chosen by CLIP.
|
231 |
</p>
|
232 |
</details>
|
233 |
""")
|
|
|
259 |
# language select dropdown
|
260 |
with gr.Row():
|
261 |
language_select = gr.Dropdown(choices=main_language_values, value="EN", interactive=True, label="Select your language:")
|
262 |
+
randomize_classes = gr.Checkbox(label="Randomize class order (or play in canonic order)", value=True)
|
263 |
+
randomize_images = gr.Checkbox(label="Randomize images (if unchecked, will always show the same image). Other images might be less relevant.", value=True)
|
264 |
start_btn = gr.Button(value="Start", variant="primary")
|
265 |
|
266 |
# quiz area
|
|
|
274 |
# with gr.Row():
|
275 |
correct_text = gr.Text("Please click start to begin.")
|
276 |
player_score_text = gr.Text(f"Player score: 0")
|
277 |
+
clip_score_text = gr.Text(f"mSigLIP score: 0")
|
278 |
+
reroll_btn = gr.Button(value="Reroll the image (for bad images or errors)")
|
279 |
|
|
|
280 |
|
281 |
|
282 |
|
283 |
options.select(fn=select,
|
284 |
+
inputs=[class_idx, language_select, options, correct_choice, model_choice, player_score, clip_score, choices],
|
285 |
outputs=[correct_text, player_score_text, clip_score_text, player_score, clip_score]
|
286 |
).then(fn=prepare,
|
287 |
inputs=[class_idx, language_select, text_embeddings, class_order, randomize_images],
|
288 |
+
outputs=[options, image, class_idx, correct_choice, model_choice, choices])
|
289 |
|
290 |
start_btn.click(fn=change_language,
|
291 |
inputs=[language_select, randomize_images, randomize_classes],
|
292 |
outputs=[text_embeddings, class_idx, class_order, correct_text, player_score_text, clip_score_text, player_score, clip_score]
|
293 |
).then(fn=prepare,
|
294 |
inputs=[class_idx, language_select, text_embeddings, class_order, randomize_images],
|
295 |
+
outputs=[options, image, class_idx, correct_choice, model_choice, choices])
|
296 |
+
|
297 |
+
reroll_btn.click(fn=reroll,
|
298 |
+
inputs=[class_idx, language_select, text_embeddings, class_order, randomize_images],
|
299 |
+
outputs=[options, image, class_idx, correct_choice, model_choice, choices])
|
300 |
|
301 |
# initialization
|
302 |
# demo.load(fn=change_language,
|
babel_imagenet-298.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bin_image.png
ADDED
data/images.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
data/precomputed_results.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
images.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
language_mapping.json
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"AB": "Abkhazian",
|
3 |
+
"ACW": "Hijazi Arabic",
|
4 |
+
"ADY": "Adyghe",
|
5 |
+
"AF": "Afrikaans",
|
6 |
+
"AFB": "Gulf Arabic",
|
7 |
+
"AII": "Assyrian Neo-Aramaic",
|
8 |
+
"AK": "Akan",
|
9 |
+
"ALS": "Alemannic",
|
10 |
+
"ALT": "Southern Altai",
|
11 |
+
"AM": "Amharic",
|
12 |
+
"AN": "Aragonese",
|
13 |
+
"ANG": "Anglo-Saxon",
|
14 |
+
"AR": "Arabic",
|
15 |
+
"ARC": "Aramaic",
|
16 |
+
"ARY": "Moroccan Arabic",
|
17 |
+
"ARZ": "Egyptian Arabic",
|
18 |
+
"AS": "Assamese",
|
19 |
+
"AST": "Asturian",
|
20 |
+
"AV": "Avar",
|
21 |
+
"AY": "Aymara",
|
22 |
+
"AZ": "Azerbaijani",
|
23 |
+
"AZB": "South Azerbaijani",
|
24 |
+
"BA": "Bashkir",
|
25 |
+
"BAN": "Balinese",
|
26 |
+
"BAR": "Bavarian",
|
27 |
+
"BAT_SMG": "Samogitian",
|
28 |
+
"BCL": "Central Bicolano",
|
29 |
+
"BE": "Belarusian",
|
30 |
+
"BE_X_OLD": "Belarusian (Tara\u0161kievica)",
|
31 |
+
"BG": "Bulgarian",
|
32 |
+
"BH": "Bihari",
|
33 |
+
"BHO": "Bhojpuri",
|
34 |
+
"BJN": "Banjar",
|
35 |
+
"BM": "Bambara",
|
36 |
+
"BN": "Bengali",
|
37 |
+
"BO": "Tibetan",
|
38 |
+
"BR": "Breton",
|
39 |
+
"BS": "Bosnian",
|
40 |
+
"BXR": "Buryat (Russia)",
|
41 |
+
"CA": "Catalan",
|
42 |
+
"CCC": "Chamicuro",
|
43 |
+
"CDO": "Min Dong",
|
44 |
+
"CE": "Chechen",
|
45 |
+
"CEB": "Cebuano",
|
46 |
+
"CHR": "Cherokee",
|
47 |
+
"CHY": "Cheyenne",
|
48 |
+
"CKB": "Sorani",
|
49 |
+
"CO": "Corsican",
|
50 |
+
"CR": "Cree",
|
51 |
+
"CRH": "Crimean Tatar",
|
52 |
+
"CS": "Czech",
|
53 |
+
"CSB": "Kashubian",
|
54 |
+
"CU": "Old Church Slavonic",
|
55 |
+
"CV": "Chuvash",
|
56 |
+
"CY": "Welsh",
|
57 |
+
"DA": "Danish",
|
58 |
+
"DE": "German",
|
59 |
+
"DIN": "Dinka",
|
60 |
+
"DIQ": "Zazaki",
|
61 |
+
"DLM": "Dalmatian",
|
62 |
+
"DNG": "Dungan",
|
63 |
+
"DSB": "Lower Sorbian",
|
64 |
+
"DV": "Divehi",
|
65 |
+
"DZ": "Dzongkha",
|
66 |
+
"EE": "Ewe",
|
67 |
+
"EL": "Greek",
|
68 |
+
"EML": "Emilian-Romagnol",
|
69 |
+
"EN": "English",
|
70 |
+
"ENM": "Middle English",
|
71 |
+
"EO": "Esperanto",
|
72 |
+
"ES": "Spanish",
|
73 |
+
"ET": "Estonian",
|
74 |
+
"EU": "Basque",
|
75 |
+
"EXT": "Extremaduran",
|
76 |
+
"FA": "Persian",
|
77 |
+
"FI": "Finnish",
|
78 |
+
"FIU_VRO": "V\u00f5ro",
|
79 |
+
"FJ": "Fijian",
|
80 |
+
"FO": "Faroese",
|
81 |
+
"FR": "French",
|
82 |
+
"FRO": "Old French",
|
83 |
+
"FRP": "Franco-Proven\u00e7al/Arpitan",
|
84 |
+
"FRR": "North Frisian",
|
85 |
+
"FUR": "Friulian",
|
86 |
+
"FY": "West Frisian",
|
87 |
+
"GA": "Irish",
|
88 |
+
"GAN": "Gan",
|
89 |
+
"GD": "Scottish Gaelic",
|
90 |
+
"GL": "Galician",
|
91 |
+
"GMQ_BOT": "Westrobothnian",
|
92 |
+
"GN": "Guarani",
|
93 |
+
"GOT": "Gothic",
|
94 |
+
"GRC": "Ancient Greek",
|
95 |
+
"GU": "Gujarati",
|
96 |
+
"GV": "Manx",
|
97 |
+
"HA": "Hausa",
|
98 |
+
"HAK": "Hakka",
|
99 |
+
"HAW": "Hawaiian",
|
100 |
+
"HE": "Hebrew",
|
101 |
+
"HI": "Hindi",
|
102 |
+
"HR": "Croatian",
|
103 |
+
"HRX": "Hunsrik",
|
104 |
+
"HSB": "Upper Sorbian",
|
105 |
+
"HT": "Haitian",
|
106 |
+
"HU": "Hungarian",
|
107 |
+
"HY": "Armenian",
|
108 |
+
"IA": "Interlingua",
|
109 |
+
"ID": "Indonesian",
|
110 |
+
"IG": "Igbo",
|
111 |
+
"IK": "Inupiak",
|
112 |
+
"ILO": "Ilokano",
|
113 |
+
"INH": "Ingush",
|
114 |
+
"IO": "Ido",
|
115 |
+
"IS": "Icelandic",
|
116 |
+
"IT": "Italian",
|
117 |
+
"IU": "Inuktitut",
|
118 |
+
"JA": "Japanese",
|
119 |
+
"JAM": "Patois",
|
120 |
+
"JBO": "Lojban",
|
121 |
+
"JV": "Javanese",
|
122 |
+
"KA": "Georgian",
|
123 |
+
"KAA": "Karakalpak",
|
124 |
+
"KAB": "Kabyle",
|
125 |
+
"KBD": "Kabardian Circassian",
|
126 |
+
"KG": "Kongo",
|
127 |
+
"KHB": "L\u00fc",
|
128 |
+
"KI": "Kikuyu",
|
129 |
+
"KK": "Kazakh",
|
130 |
+
"KL": "Greenlandic",
|
131 |
+
"KM": "Khmer",
|
132 |
+
"KMR": "Northern Kurdish",
|
133 |
+
"KN": "Kannada",
|
134 |
+
"KO": "Korean",
|
135 |
+
"KOI": "Komi-Permyak",
|
136 |
+
"KRC": "Karachay-Balkar",
|
137 |
+
"KS": "Kashmiri",
|
138 |
+
"KSH": "Ripuarian",
|
139 |
+
"KU": "Kurdish",
|
140 |
+
"KUM": "Kumyk",
|
141 |
+
"KV": "Komi",
|
142 |
+
"KW": "Cornish",
|
143 |
+
"KXD": "Brunei Malay",
|
144 |
+
"KY": "Kirghiz",
|
145 |
+
"LA": "Latin",
|
146 |
+
"LAD": "Ladino",
|
147 |
+
"LB": "Luxembourgish",
|
148 |
+
"LBE": "Lak",
|
149 |
+
"LEZ": "Lezgian",
|
150 |
+
"LG": "Luganda",
|
151 |
+
"LI": "Limburgish",
|
152 |
+
"LIJ": "Ligurian",
|
153 |
+
"LMO": "Lombard",
|
154 |
+
"LN": "Lingala",
|
155 |
+
"LO": "Lao",
|
156 |
+
"LT": "Lithuanian",
|
157 |
+
"LTG": "Latgalian",
|
158 |
+
"LV": "Latvian",
|
159 |
+
"LZZ": "Laz",
|
160 |
+
"MAI": "Maithili",
|
161 |
+
"MDF": "Moksha",
|
162 |
+
"MEL": "Central Melanau",
|
163 |
+
"MG": "Malagasy",
|
164 |
+
"MHR": "Meadow Mari",
|
165 |
+
"MI": "Maori",
|
166 |
+
"MIC": "Mi'kmaq",
|
167 |
+
"MIN": "Minangkabau",
|
168 |
+
"MK": "Macedonian",
|
169 |
+
"ML": "Malayalam",
|
170 |
+
"MN": "Mongolian",
|
171 |
+
"MNC": "Manchu",
|
172 |
+
"MNW": "Mon",
|
173 |
+
"MR": "Marathi",
|
174 |
+
"MRJ": "Hill Mari",
|
175 |
+
"MS": "Malay",
|
176 |
+
"MT": "Maltese",
|
177 |
+
"MWL": "Mirandese",
|
178 |
+
"MY": "Burmese",
|
179 |
+
"MYV": "Erzya",
|
180 |
+
"MZN": "Mazandarani",
|
181 |
+
"NAH": "Nahuatl",
|
182 |
+
"NAP": "Neapolitan",
|
183 |
+
"NCI": "Classical Nahuatl",
|
184 |
+
"NDS": "Low Saxon",
|
185 |
+
"NDS_NL": "Dutch Low Saxon",
|
186 |
+
"NE": "Nepali",
|
187 |
+
"NEW": "Newar / Nepal Bhasa",
|
188 |
+
"NL": "Dutch",
|
189 |
+
"NN": "Norwegian (Nynorsk)",
|
190 |
+
"NO": "Norwegian (Bokm\u00e5l)",
|
191 |
+
"NOG": "Nogai",
|
192 |
+
"NON": "Old Norse",
|
193 |
+
"NOV": "Novial",
|
194 |
+
"NRM": "Norman",
|
195 |
+
"NSO": "Northern Sotho",
|
196 |
+
"NV": "Navajo",
|
197 |
+
"NY": "Chichewa",
|
198 |
+
"OC": "Occitan",
|
199 |
+
"OJ": "Ojibwe",
|
200 |
+
"OLO": "Livvinkarjala",
|
201 |
+
"OM": "Oromo",
|
202 |
+
"OR": "Oriya",
|
203 |
+
"ORV": "Old East Slavic",
|
204 |
+
"OS": "Ossetian",
|
205 |
+
"OTA": "Ottoman Turkish",
|
206 |
+
"OVD": "Elfdalian",
|
207 |
+
"PA": "Punjabi",
|
208 |
+
"PAM": "Kapampangan",
|
209 |
+
"PAP": "Papiamentu",
|
210 |
+
"PCD": "Picard",
|
211 |
+
"PDC": "Pennsylvania German",
|
212 |
+
"PDT": "Plautdietsch",
|
213 |
+
"PL": "Polish",
|
214 |
+
"PMS": "Piedmontese",
|
215 |
+
"PNB": "Western Panjabi",
|
216 |
+
"PS": "Pashto",
|
217 |
+
"PT": "Portuguese",
|
218 |
+
"QU": "Quechua",
|
219 |
+
"RM": "Romansh",
|
220 |
+
"RMY": "Romani",
|
221 |
+
"RO": "Romanian",
|
222 |
+
"ROA_RUP": "Aromanian",
|
223 |
+
"RU": "Russian",
|
224 |
+
"RUE": "Rusyn",
|
225 |
+
"SA": "Sanskrit",
|
226 |
+
"SAH": "Sakha",
|
227 |
+
"SAT": "Santali",
|
228 |
+
"SC": "Sardinian",
|
229 |
+
"SCN": "Sicilian",
|
230 |
+
"SCO": "Scots",
|
231 |
+
"SD": "Sindhi",
|
232 |
+
"SE": "Northern Sami",
|
233 |
+
"SH": "Serbo-Croatian",
|
234 |
+
"SHI": "Tashelhit",
|
235 |
+
"SHN": "Shan",
|
236 |
+
"SI": "Sinhalese",
|
237 |
+
"SIMPLE": "Simple English",
|
238 |
+
"SK": "Slovak",
|
239 |
+
"SL": "Slovenian",
|
240 |
+
"SM": "Samoan",
|
241 |
+
"SMJ": "Lule Sami",
|
242 |
+
"SMN": "Inari Sami",
|
243 |
+
"SMS": "Skolt Sami",
|
244 |
+
"SN": "Shona",
|
245 |
+
"SNE": "Bau Bidayuh",
|
246 |
+
"SO": "Somali",
|
247 |
+
"SQ": "Albanian",
|
248 |
+
"SR": "Serbian",
|
249 |
+
"SRN": "Sranan",
|
250 |
+
"ST": "Sesotho",
|
251 |
+
"STQ": "Saterland Frisian",
|
252 |
+
"SU": "Sundanese",
|
253 |
+
"SV": "Swedish",
|
254 |
+
"SVA": "Svan",
|
255 |
+
"SW": "Swahili",
|
256 |
+
"SYC": "Classical Syriac",
|
257 |
+
"SZL": "Silesian",
|
258 |
+
"TA": "Tamil",
|
259 |
+
"TCY": "Tulu",
|
260 |
+
"TE": "Telugu",
|
261 |
+
"TG": "Tajik",
|
262 |
+
"TH": "Thai",
|
263 |
+
"TI": "Tigrinya",
|
264 |
+
"TK": "Turkmen",
|
265 |
+
"TL": "Tagalog",
|
266 |
+
"TN": "Tswana",
|
267 |
+
"TO": "Tongan",
|
268 |
+
"TPI": "Tok Pisin",
|
269 |
+
"TR": "Turkish",
|
270 |
+
"TT": "Tatar",
|
271 |
+
"TYV": "Tuvan",
|
272 |
+
"UDM": "Udmurt",
|
273 |
+
"UG": "Uyghur",
|
274 |
+
"UGA": "Ugaritic",
|
275 |
+
"UK": "Ukrainian",
|
276 |
+
"UR": "Urdu",
|
277 |
+
"UZ": "Uzbek",
|
278 |
+
"VEC": "Venetian",
|
279 |
+
"VEP": "Vepsian",
|
280 |
+
"VI": "Vietnamese",
|
281 |
+
"VLS": "West Flemish",
|
282 |
+
"VO": "Volap\u00fck",
|
283 |
+
"WA": "Walloon",
|
284 |
+
"WAR": "Waray-Waray",
|
285 |
+
"WO": "Wolof",
|
286 |
+
"WUU": "Wu",
|
287 |
+
"XAL": "Kalmyk",
|
288 |
+
"XH": "Xhosa",
|
289 |
+
"XMF": "Mingrelian",
|
290 |
+
"YI": "Yiddish",
|
291 |
+
"YO": "Yoruba",
|
292 |
+
"YUA": "Yucatec Maya",
|
293 |
+
"ZA": "Zhuang",
|
294 |
+
"ZDJ": "Ngazidja Comorian",
|
295 |
+
"ZH": "Chinese",
|
296 |
+
"ZH_CLASSICAL": "Classical Chinese",
|
297 |
+
"ZH_MIN_NAN": "Min Nan",
|
298 |
+
"ZH_YUE": "Cantonese",
|
299 |
+
"ZU": "Zulu"
|
300 |
+
}
|
precomputed_results.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c04522ddd7d79055f5d26c4e60a809f7725e67032dd46bbd0b8303cdc039e882
|
3 |
+
size 26844572
|