gsarti commited on
Commit
6a50007
1 Parent(s): 448a3a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -6,7 +6,7 @@ from inseq import FeatureAttributionOutput
6
  st.set_page_config(layout="wide")
7
 
8
  dataset = load_dataset("GroNLP/divemt")
9
- attribution_path = "https://huggingface.co/datasets/inseq/divemt_attributions/resolve/main/divemt-attributions/it/{idx}_it_gradl2_{setting}_{sentence_type}.json.gz"
10
  df = dataset["train"].to_pandas()
11
  unique_src = df[["item_id", "src_text"]].drop_duplicates(subset="item_id")
12
  langs = list(df["lang_id"].unique())
@@ -80,9 +80,9 @@ for lang in langs:
80
  st.markdown(f"<b>Aligned edits</b>:", unsafe_allow_html=True)
81
  if dic["aligned_edit"] is not None:
82
  aligned_edit = dic["aligned_edit"]
83
- if lang == 'ara' and len(dic["aligned_edit"].split("EVAL: ")) == 2:
84
- edits_reverse = aligned_edit.split("EVAL: ")[1][::-1]
85
- aligned_edit = aligned_edit.split("EVAL: ")[0] + "EVAL: " + edits_reverse
86
  aligned_edit = aligned_edit.replace("\\n", "\n").replace("REF:", "MT :").replace("HYP:", "PE :")
87
  st.text(aligned_edit)
88
  else:
@@ -94,10 +94,10 @@ for lang in langs:
94
  st.markdown(f"<b>Attributions</b>:", unsafe_allow_html=True)
95
  st.text("Click on checkboxes to show/hide the respective attributions computed with mBART 1-to-50.")
96
  for sentence_type in ["mt", "pe", "diff"]:
97
- url = attribution_path.format(idx=item_id, setting=setting, sentence_type=sentence_type)
98
  try:
99
  g = urllib.request.urlopen(url)
100
- fpath = f"attr_{sentence_type}.json.gz"
101
  with open(fpath, 'b+w') as f:
102
  f.write(g.read())
103
  attr = FeatureAttributionOutput.load(fpath, decompress=True)
 
6
  st.set_page_config(layout="wide")
7
 
8
  dataset = load_dataset("GroNLP/divemt")
9
+ attribution_path = "https://huggingface.co/datasets/inseq/divemt_attributions/resolve/main/divemt-attributions/it/{idx}_{lang}_gradl2_{setting}_{sentence_type}.json.gz"
10
  df = dataset["train"].to_pandas()
11
  unique_src = df[["item_id", "src_text"]].drop_duplicates(subset="item_id")
12
  langs = list(df["lang_id"].unique())
 
80
  st.markdown(f"<b>Aligned edits</b>:", unsafe_allow_html=True)
81
  if dic["aligned_edit"] is not None:
82
  aligned_edit = dic["aligned_edit"]
83
+ #if lang == 'ara' and len(dic["aligned_edit"].split("EVAL: ")) == 2:
84
+ # edits_reverse = aligned_edit.split("EVAL: ")[1][::-1]
85
+ # aligned_edit = aligned_edit.split("EVAL: ")[0] + "EVAL: " + edits_reverse
86
  aligned_edit = aligned_edit.replace("\\n", "\n").replace("REF:", "MT :").replace("HYP:", "PE :")
87
  st.text(aligned_edit)
88
  else:
 
94
  st.markdown(f"<b>Attributions</b>:", unsafe_allow_html=True)
95
  st.text("Click on checkboxes to show/hide the respective attributions computed with mBART 1-to-50.")
96
  for sentence_type in ["mt", "pe", "diff"]:
97
+ url = attribution_path.format(idx=item_id, setting=setting, sentence_type=sentence_type, lang=lang)
98
  try:
99
  g = urllib.request.urlopen(url)
100
+ fpath = f"attr_{lang}_{sentence_type}.json.gz"
101
  with open(fpath, 'b+w') as f:
102
  f.write(g.read())
103
  attr = FeatureAttributionOutput.load(fpath, decompress=True)