mlagility / streamlit_helpers.py
danielhn's picture
Add helper functions
d6661a1
from collections import Counter
from typing import List
import numpy as np
import streamlit as st # pylint: disable=import-error
import pandas as pd
class Collapsable:
"""
Creates a collapsable text composed of a preamble (clickable section of text)
and epilogue (collapsable text).
"""
def __init__(self, preamble="", epilogue=""):
self.preamble = preamble
self.epilogue = epilogue
self.small_font = 18
self.large_font = 18
self.sections = []
def add_section(self, heading, text):
# Convert text to bullet points if it is a list
if isinstance(text, list):
text = (
"<ul>"
+ "".join(
[
f'<li style="font-size:{self.small_font}px;" align="justify">{x}</li>'
for x in text
]
)
+ "</ul>"
)
# Append section
self.sections.append((heading, text))
def deploy(self):
secs = "".join(
[
(
"<details>"
f"<summary style='font-size:{self.large_font}px;'>{heading}</summary>"
f"<blockquote style='font-size:{self.small_font}px;max-width: 80%;'"
f"align='justify'>{text}</details>"
)
for heading, text in self.sections
]
)
collapsable_sec = f"""
<ol>
{self.preamble}
{secs}
{self.epilogue}
</ol>
"""
st.markdown(collapsable_sec, unsafe_allow_html=True)
def add_filter(
data_frame_list: List[pd.DataFrame],
name: str,
label: str,
options: List[str] = None,
num_cols: int = 1,
last_is_others: bool = True,
):
"""
Creates a filter on the side bar using checkboxes
"""
# Get list of all options and return if no options are available
all_options = set(data_frame_list[-1][label])
if "-" in all_options:
all_options.remove("-")
if len(all_options) == 0:
return data_frame_list
st.markdown(f"#### {name}")
# Create list of options if selectable options are not provided
if options is None:
options_dict = Counter(data_frame_list[-1][label])
sorted_options = sorted(options_dict, key=options_dict.get, reverse=True)
if "-" in sorted_options:
sorted_options.remove("-")
if len(sorted_options) > 8:
options = list(sorted_options[:7]) + ["others"]
last_is_others = True
else:
options = list(sorted_options)
last_is_others = False
cols = st.columns(num_cols)
instantiated_checkbox = []
for idx in range(len(options)):
with cols[idx % num_cols]:
instantiated_checkbox.append(
st.checkbox(options[idx], False, key=f"{label}_{options[idx]}")
)
selected_options = [
options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
]
# The last checkbox will always correspond to "other"
if instantiated_checkbox[-1] and last_is_others:
selected_options = selected_options[:-1]
other_options = [x for x in all_options if x not in options]
selected_options = set(selected_options + other_options)
if len(selected_options) > 0:
for idx, _ in enumerate(data_frame_list):
data_frame_list[idx] = data_frame_list[idx][
[
any([x == model_entry for x in selected_options])
for model_entry in data_frame_list[idx][label]
]
]
return data_frame_list
def slider_filter(
data_frame_list: List[pd.DataFrame],
title: str,
filter_by: str,
max_val: int = 1000,
):
"""
Creates slider to filter dataframes according to a given label.
label must be numeric. Values are in millions.
"""
start_val, end_val = st.select_slider(
title,
options=[str(x) for x in np.arange(0, max_val + 1, 10, dtype=int)],
value=("0", str(max_val)),
)
for idx in range(len(data_frame_list)):
data_frame_list[idx] = data_frame_list[idx][
[
int(model_entry) >= int(start_val) * 1000000
and int(model_entry) <= int(end_val) * 1000000
for model_entry in data_frame_list[idx][filter_by]
]
]
return data_frame_list