File size: 1,216 Bytes
75bbd39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4686a40
 
75bbd39
e7a8a64
75bbd39
4686a40
 
e7a8a64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import whisper
import gradio as gr 
import time
model = whisper.load_model("base")
#from transformers import pipeline
#es_en_translator = pipeline("translation_es_to_en")

def transcribe(audio):
    
    #time.sleep(3)
    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")
    #lang = LANGUAGES[language]
    #lang=(f"Detected language: {lang}")


    # decode the audio
    options = whisper.DecodingOptions(fp16 = False)#,task= "translate")
    result = whisper.decode(model, mel, options)
    #word= result.text
    #trans = es_en_translator(word)
    #Trans = trans[0]['translation_text']
    #result=f"{lang}\n{word}\n\nEnglish translation: {Trans}"
    return result.text
    
    
 
gr.Interface(
    title='SPEECH TO TEXT',
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath")  # Update here
    ],
    outputs=["textbox"],
    live=True
).launch()