File size: 13,814 Bytes
a8d9c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cebfd9
a8d9c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cebfd9
a8d9c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cebfd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "cdad6b21-030a-40d3-9b31-a229e5b6196d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer, AutoConfig, CLIPImageProcessor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1f832710-0e8c-42ec-b581-1b15fd2a6acc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-01-25 14:31:58,511] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
     ]
    }
   ],
   "source": [
    "from model import LlavaPhiForCausalLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "9e68f1d4-1ae3-4d45-b818-4600218d2215",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e5e13e666e3a43d4ad26cc70904abee8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "model_name = \"GunaKoppula/Llava-Phi2\"\n",
    "model = LlavaPhiForCausalLM.from_pretrained(model_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "49edfa0d-e08a-4d3c-a1d6-34068b122419",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(model_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "dcec20cd-d946-42d7-8e10-c198cd49b486",
   "metadata": {},
   "outputs": [],
   "source": [
    "image_processor = CLIPImageProcessor.from_pretrained(model_name)\n",
    "mm_use_im_start_end = getattr(model.config, \"mm_use_im_start_end\", False)\n",
    "mm_use_im_patch_token = getattr(model.config, \"mm_use_im_patch_token\", True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "443c13c4-b7e6-4bc5-b6c7-c577bd4708f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "if mm_use_im_patch_token:\n",
    "    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)\n",
    "if mm_use_im_start_end:\n",
    "    tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)\n",
    "    \n",
    "if hasattr(model.config, \"max_sequence_length\"):\n",
    "        context_len = model.config.max_sequence_length\n",
    "else:\n",
    "    context_len = 2048"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "d8caee43-0d2a-46d4-bdbc-2cfc7dec9e52",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import WhisperProcessor, WhisperForConditionalGeneration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3acea526-d8ae-4eb6-8dfc-4ea72651b547",
   "metadata": {},
   "outputs": [],
   "source": [
    "class AudioLanguageConnector:\n",
    "    def __init__(self, projection_dim):\n",
    "        model_name = \"microsoft/phi-2\"\n",
    "        self.phi2_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)\n",
    "        self.phi2_tokenizer.pad_token = self.phi2_tokenizer.eos_token\n",
    "        self.phi2_tokenizer.max_length = projection_dim\n",
    "\n",
    "    def __call__(self, text):\n",
    "        text = f\"<audio_start> {text} <audio_end>\"\n",
    "        tokens = self.phi2_tokenizer(text, return_tensors=\"pt\", return_attention_mask=False)\n",
    "        return tokens\n",
    "        \n",
    "\n",
    "class WhisperWithProjection:\n",
    "    def __init__(self, projection_dim, device):\n",
    "        self.device = device\n",
    "        self.processor = WhisperProcessor.from_pretrained(\"openai/whisper-tiny\", device_map=device)\n",
    "        self.model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-tiny\", device_map=device)\n",
    "        self.model.config.forced_decoder_ids = None\n",
    "        # self.audio_language_connector = AudioLanguageConnector(projection_dim)\n",
    "        \n",
    "    def __call__(self, audio):\n",
    "        input_features = self.processor(audio[\"array\"],\n",
    "                                   sampling_rate=audio[\"sampling_rate\"],\n",
    "                                   return_tensors=\"pt\").input_features\n",
    "        # generate token ids\n",
    "        predicted_ids = self.model.generate(input_features.to(self.device))\n",
    "        # decode token ids to text        \n",
    "        transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
    "\n",
    "        # audio_embeddings = self.audio_language_connector(transcription)\n",
    "        return transcription"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "a2757c91-2ec1-4fe7-9216-03740bf80061",
   "metadata": {},
   "outputs": [],
   "source": [
    "IGNORE_INDEX = -100\n",
    "IMAGE_TOKEN_INDEX = -200\n",
    "DEFAULT_IMAGE_TOKEN = \"<image>\"\n",
    "DEFAULT_IMAGE_PATCH_TOKEN = \"<im_patch>\"\n",
    "DEFAULT_IM_START_TOKEN = \"<im_start>\"\n",
    "DEFAULT_IM_END_TOKEN = \"<im_end>\"\n",
    "\n",
    "from conversation import conv_templates, SeparatorStyle\n",
    "\n",
    "class MultiModalPhi2:\n",
    "    def __init__(self, modelname_or_path=\"GunaKoppula/Llava-Phi2\",\n",
    "                temperature=0.2,\n",
    "                max_new_tokens=1024,\n",
    "                device=\"cuda:0\"):\n",
    "        self.model_name = modelname_or_path\n",
    "        self.temperature = temperature\n",
    "        self.max_new_tokens = max_new_tokens\n",
    "        self.device = device\n",
    "        self.disable_torch_init()\n",
    "        self.whisper_w_proj = WhisperWithProjection(projection_dim=512, device=device)\n",
    "        self.load_pretrained_model()\n",
    "        \n",
    "    def disable_torch_init(self):\n",
    "        \"\"\"\n",
    "        Disable the redundant torch default initialization to accelerate model creation.\n",
    "        \"\"\"\n",
    "        setattr(torch.nn.Linear, \"reset_parameters\", lambda self: None)\n",
    "        setattr(torch.nn.LayerNorm, \"reset_parameters\", lambda self: None)\n",
    "        \n",
    "    def load_pretrained_model(self):\n",
    "        self.model = LlavaPhiForCausalLM.from_pretrained(self.model_name, device_map=self.device)\n",
    "        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)\n",
    "        self.image_processor = CLIPImageProcessor.from_pretrained(self.model_name)\n",
    "        mm_use_im_start_end = getattr(self.model.config, \"mm_use_im_start_end\", False)\n",
    "        mm_use_im_patch_token = getattr(self.model.config, \"mm_use_im_patch_token\", True)\n",
    "        if mm_use_im_patch_token:\n",
    "            self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)\n",
    "        if mm_use_im_start_end:\n",
    "            self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)\n",
    "    \n",
    "    def tokenizer_image_token(self, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):\n",
    "        prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]\n",
    "    \n",
    "        def insert_separator(X, sep):\n",
    "            return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]\n",
    "    \n",
    "        input_ids = []\n",
    "        offset = 0\n",
    "        if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:\n",
    "            offset = 1\n",
    "            input_ids.append(prompt_chunks[0][0])\n",
    "        for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):\n",
    "            input_ids.extend(x[offset:])\n",
    "    \n",
    "        if return_tensors is not None:\n",
    "            if return_tensors == 'pt':\n",
    "                return torch.tensor(input_ids, dtype=torch.long)\n",
    "            raise ValueError(f'Unsupported tensor type: {return_tensors}')\n",
    "        return input_ids\n",
    "        \n",
    "    def __call__(self, text, audio, image):\n",
    "        qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\\n' + text\n",
    "        conv = conv_templates[\"phi-2_v0\"].copy()\n",
    "        conv.append_message(conv.roles[0], qs)\n",
    "        conv.append_message(conv.roles[1], None)\n",
    "        prompt = conv.get_prompt()\n",
    "\n",
    "        image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(self.device)\n",
    "        \n",
    "        input_ids = self.tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)\n",
    "        if audio is not None:\n",
    "            audio_transcript = self.whisper_w_proj(audio)\n",
    "            audio_embed = self.tokenizer(audio_transcript, return_tensors='pt')[\"input_ids\"]\n",
    "            input_ids = torch.concat([input_ids, audio_embed], dim=1)\n",
    "        input_ids = input_ids.to(self.device)\n",
    "            \n",
    "        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2\n",
    "\n",
    "        with torch.inference_mode():\n",
    "            output_ids = self.model.generate(\n",
    "                input_ids,\n",
    "                images=image_tensor,\n",
    "                do_sample=True,\n",
    "                temperature=self.temperature,\n",
    "                max_new_tokens=self.max_new_tokens,\n",
    "                eos_token_id=self.tokenizer.eos_token_id,  # End of sequence token\n",
    "                pad_token_id=self.tokenizer.eos_token_id,  # Pad token\n",
    "                use_cache=True,\n",
    "            )\n",
    "\n",
    "        input_token_len = input_ids.shape[1]\n",
    "        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()\n",
    "        if n_diff_input_output > 0:\n",
    "            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')\n",
    "        outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]\n",
    "        outputs = outputs.strip()\n",
    "        if outputs.endswith(stop_str):\n",
    "            outputs = outputs[:-len(stop_str)]\n",
    "        outputs = outputs.strip()\n",
    "        return outputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "cc47e6a0-3544-4a60-930f-ccae87ef945a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9ef56077307d4cef907e25b092061611",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "multimodal_phi2 = MultiModalPhi2()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "cb8aca1b-7d75-45e7-b5a4-71d151f792e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from PIL import Image\n",
    "import requests\n",
    "\n",
    "url = \"https://www.ilankelman.org/stopsigns/australia.jpg\"\n",
    "image = Image.open(requests.get(url, stream=True).raw)\n",
    "\n",
    "from datasets import load_dataset\n",
    "audio_ds = load_dataset(\"hf-internal-testing/librispeech_asr_dummy\", \"clean\", split=\"validation\")\n",
    "audio = audio_ds[0][\"audio\"]\n",
    "\n",
    "text = \"tell me about the image\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "6767efc6-be4f-44d3-84ff-34db57d9f940",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'In the image, there is a Chinese writing on a pole in a foreign language. This suggests that the image was taken in a foreign country, possibly in a foreign country. The sign is in a foreign language, which might be in a foreign language. The sign is written in Japanese, which is a common language in Japan. The sign is also written in two different languages, which suggests that it is written in a language that is not in the native language.'"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "multimodal_phi2(text, None, image)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0bdd0b8a-709b-4c82-ac1d-dc746d3a0748",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}