File size: 8,129 Bytes
a8d9c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1b49d4
a8d9c50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1b49d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import soundfile as sf
import librosa
import torch
from transformers import (
    AutoTokenizer,
    CLIPImageProcessor,
    WhisperProcessor,
    WhisperForConditionalGeneration,
)

from .model import LlavaPhiForCausalLM
from .conversation import conv_templates, SeparatorStyle

IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


class AudioLanguageConnector:
    def __init__(self, projection_dim):
        model_name = "microsoft/phi-2"
        self.phi2_tokenizer = AutoTokenizer.from_pretrained(
            model_name, trust_remote_code=True
        )
        self.phi2_tokenizer.pad_token = self.phi2_tokenizer.eos_token
        self.phi2_tokenizer.max_length = projection_dim

    def __call__(self, text):
        text = f"<audio_start> {text} <audio_end>"
        tokens = self.phi2_tokenizer(
            text, return_tensors="pt", return_attention_mask=False
        )
        return tokens


class WhisperWithProjection:
    def __init__(self, projection_dim, device):
        self.device = device
        self.processor = WhisperProcessor.from_pretrained(
            "openai/whisper-tiny", device_map=device
        )
        self.model = WhisperForConditionalGeneration.from_pretrained(
            "openai/whisper-tiny", device_map=device
        )
        self.model.config.forced_decoder_ids = None
        # self.audio_language_connector = AudioLanguageConnector(projection_dim)

    def __call__(self, audio):
        array, sampling_rate = sf.read(audio)
        resampled_array = librosa.resample(
            array,
            orig_sr=sampling_rate,
            target_sr=16000,
        )
        input_features = self.processor(
            resampled_array, sampling_rate=16000, return_tensors="pt"
        ).input_features
        # generate token ids
        predicted_ids = self.model.generate(input_features.to(self.device))
        # decode token ids to text
        transcription = self.processor.batch_decode(
            predicted_ids, skip_special_tokens=True
        )

        # audio_embeddings = self.audio_language_connector(transcription)
        return transcription


class MultiModalPhi2:
    def __init__(
        self,
        modelname_or_path="GunaKoppula/Llava-Phi2",
        temperature=0.2,
        max_new_tokens=1024,
        device="cuda:0",
    ):
        self.model_name = modelname_or_path
        self.temperature = temperature
        self.max_new_tokens = max_new_tokens
        self.device = device
        self.disable_torch_init()
        self.whisper_w_proj = WhisperWithProjection(projection_dim=512, device=device)
        self.load_pretrained_model()

    def disable_torch_init(self):
        """
        Disable the redundant torch default initialization to accelerate model creation.
        """
        setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
        setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)

    def load_pretrained_model(self):
        self.model = LlavaPhiForCausalLM.from_pretrained(
            self.model_name, device_map=self.device
        )
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.image_processor = CLIPImageProcessor.from_pretrained(self.model_name)
        mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(
            self.model.config, "mm_use_im_patch_token", True
        )
        if mm_use_im_patch_token:
            self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            self.tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )

    def tokenizer_image_token(
        self,
        prompt,
        tokenizer,
        image_token_index=IMAGE_TOKEN_INDEX,
        return_tensors=None,
    ):
        prompt_chunks = [
            tokenizer(chunk).input_ids for chunk in prompt.split("<image>")
        ]

        def insert_separator(X, sep):
            return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

        input_ids = []
        offset = 0
        if (
            len(prompt_chunks) > 0
            and len(prompt_chunks[0]) > 0
            and prompt_chunks[0][0] == tokenizer.bos_token_id
        ):
            offset = 1
            input_ids.append(prompt_chunks[0][0])
        for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
            input_ids.extend(x[offset:])

        if return_tensors is not None:
            if return_tensors == "pt":
                return torch.tensor(input_ids, dtype=torch.long)
            raise ValueError(f"Unsupported tensor type: {return_tensors}")
        return input_ids

    def __call__(self, text, audio, image):
        if text is None:
            text = ""
        if image is not None:
            qs = (
                DEFAULT_IM_START_TOKEN
                + DEFAULT_IMAGE_TOKEN
                + DEFAULT_IM_END_TOKEN
                + "\n"
                + text
            )
            conv = conv_templates["phi-2_v0"].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()

            input_ids = self.tokenizer_image_token(
                prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
            ).unsqueeze(0)

            image_tensor = self.image_processor.preprocess(image, return_tensors="pt")[
                "pixel_values"
            ].to(self.device)
        else:
            qs = text
            conv = conv_templates["phi-2_v0"].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()

            input_ids = self.tokenizer(prompt, return_tensors="pt")["input_ids"]

            image_tensor = None

        if audio is not None:
            audio_transcript = self.whisper_w_proj(audio)
            audio_embed = self.tokenizer(audio_transcript, return_tensors="pt")[
                "input_ids"
            ]
            input_ids = torch.concat([input_ids, audio_embed], dim=1)
        input_ids = input_ids.to(self.device)

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2

        with torch.inference_mode():
            if image is not None:
                output_ids = self.model.generate(
                    input_ids,
                    images=image_tensor,
                    do_sample=True,
                    temperature=self.temperature,
                    max_new_tokens=self.max_new_tokens,
                    eos_token_id=self.tokenizer.eos_token_id,  # End of sequence token
                    pad_token_id=self.tokenizer.eos_token_id,  # Pad token
                    use_cache=True,
                )
            else:
                output_ids = self.model.generate(
                    input_ids,
                    do_sample=True,
                    temperature=self.temperature,
                    max_new_tokens=self.max_new_tokens,
                    eos_token_id=self.tokenizer.eos_token_id,  # End of sequence token
                    pad_token_id=self.tokenizer.eos_token_id,  # Pad token
                    use_cache=True,
                )

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (
            (input_ids != output_ids[:, :input_token_len]).sum().item()
        )
        if n_diff_input_output > 0:
            print(
                f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
            )
        outputs = self.tokenizer.batch_decode(
            output_ids[:, input_token_len:], skip_special_tokens=True
        )[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[: -len(stop_str)]
        outputs = outputs.strip()
        return outputs