Spaces:
Runtime error
Runtime error
import os | |
from typing import Union | |
from transformers import PretrainedConfig, PhiConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class LlavaPhiVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a | |
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP | |
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimentionality of text and vision projection layers. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
mm_vision_select_feature (`str`, *optional*, defaults to `"patch"`): | |
The feature to select from the vision encoder output. Can be one of `"patch"` or `"cls_patch"`. | |
mm_vision_select_layer (`int`, *optional*, defaults to `-2`): | |
The layer to select from the vision encoder output. | |
Example: | |
```python | |
>>> from transformers import CLIPVisionConfig, CLIPVisionModel | |
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration | |
>>> configuration = CLIPVisionConfig() | |
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration | |
>>> model = CLIPVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "llava_phi_clip_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
projection_dim=512, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=32, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
mm_vision_select_feature="patch", | |
mm_vision_select_layer=-2, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.mm_vision_select_feature = mm_vision_select_feature | |
self.mm_vision_select_layer = mm_vision_select_layer | |
def from_pretrained( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict( | |
pretrained_model_name_or_path, **kwargs | |
) | |
# get the vision config dict if we are loading from CLIPConfig | |
if config_dict.get("model_type") == "llava_phi-phi": | |
config_dict = config_dict["vision_config"] | |
if ( | |
"model_type" in config_dict | |
and hasattr(cls, "model_type") | |
and config_dict["model_type"] != cls.model_type | |
): | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class ProjectorConfig(PretrainedConfig): | |
model_type = "llava_phi_projector" | |
def __init__( | |
self, mm_projector_type="linear", mm_hidden_size=768, hidden_size=2560, **kwargs | |
): | |
self.mm_projector_type = mm_projector_type | |
self.mm_hidden_size = mm_hidden_size | |
self.hidden_size = hidden_size | |
super().__init__(**kwargs) | |
def from_pretrained( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict( | |
pretrained_model_name_or_path, **kwargs | |
) | |
# get the vision config dict if we are loading from CLIPConfig | |
if config_dict.get("model_type") == "llava_phi-phi": | |
config_dict = config_dict["projector_config"] | |
if ( | |
"model_type" in config_dict | |
and hasattr(cls, "model_type") | |
and config_dict["model_type"] != cls.model_type | |
): | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
DEFAULT_VISUAL_CONFIG = { | |
"vision_tower": LlavaPhiVisionConfig().to_dict(), | |
"mm_projector": ProjectorConfig().to_dict(), | |
} | |
class LlavaPhiConfig(PhiConfig): | |
model_type = "llava_phi" | |
def __init__(self, vision_config=None, **kwargs): | |
if vision_config is None: | |
self.vision_config = DEFAULT_VISUAL_CONFIG | |
else: | |
self.vision_config = vision_config | |
super().__init__(**kwargs) | |
if __name__ == "__main__": | |
print(LlavaPhiVisionConfig()) | |