Spaces:
Runtime error
Runtime error
from abc import ABC | |
import torch | |
import torch.nn as nn | |
from transformers import CLIPPreTrainedModel, CLIPVisionConfig | |
from transformers.models.clip.modeling_clip import CLIPVisionTransformer | |
from inference.model.language_model.configuration_llava_phi import LlavaPhiVisionConfig | |
class CLIPVisionTower(CLIPPreTrainedModel): | |
config_class = LlavaPhiVisionConfig | |
def __init__(self, config): | |
super().__init__(config) | |
self.vision_model = CLIPVisionTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.vision_model.embeddings.patch_embedding | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[ | |
self.config.mm_vision_select_layer | |
] | |
if self.config.mm_vision_select_feature == "patch": | |
image_features = image_features[:, 1:] | |
elif self.config.mm_vision_select_feature == "cls_patch": | |
image_features = image_features | |
else: | |
raise ValueError( | |
f"Unexpected select feature: {self.config.mm_vision_select_feature}" | |
) | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_model( | |
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
output_hidden_states=True, | |
) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_model( | |
images.to(device=self.device, dtype=self.dtype), | |
output_hidden_states=True, | |
) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return list(self.vision_model.parameters())[0].dtype | |
def device(self): | |
return list(self.vision_model.parameters())[0].device | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
if __name__ == "__main__": | |
clip_config = CLIPVisionConfig.from_pretrained( | |
"/data/private/zhumj/GPTcode/mm-phi/openai/clip-vit-large-patch14-336" | |
) | |
print("################ clip_config ##############") | |
print(clip_config) | |
phi_vis_config = LlavaPhiVisionConfig(**clip_config.to_dict()) | |
print("################ phi_vis_config ##############") | |
print(phi_vis_config) | |
model = CLIPVisionTower(clip_config) | |
# print(list(model.vision_model.parameters())[0].dtype) | |