Spaces:
Sleeping
Sleeping
File size: 11,717 Bytes
48b5e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#!/usr/bin/env python
import os
import torch
import string
import onnxruntime as ort
from dataclasses import dataclass
from omegaconf import OmegaConf
from typing import List, Optional, Union, Dict
from sentencepiece import SentencePieceProcessor
from torch.utils.data import Dataset, DataLoader
from typing import Iterator, List, Iterable, Tuple
ACRONYM_TOKEN = "<ACRONYM>"
torch.set_grad_enabled(False)
torch.backends.cudnn.enabled = False
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
@dataclass
class PunctCapConfigONNX:
spe_filename: str = "xlm_roberta_encoding.model"
model_filename: str = "nemo_model.onnx"
config_filename: str = "config.yaml"
directory: Optional[str] = None
class PunctCapModelONNX:
def __init__(self, cfg: PunctCapConfigONNX):
self._spe_path = os.path.join(cfg.directory, cfg.spe_filename)
onnx_path = os.path.join(cfg.directory, cfg.model_filename)
config_path = os.path.join(cfg.directory, cfg.config_filename)
self._tokenizer: SentencePieceProcessor = SentencePieceProcessor(self._spe_path)
self._ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path)
self._config = OmegaConf.load(config_path)
self._max_len = self._config.max_length
self._pre_labels: List[str] = self._config.pre_labels
self._post_labels: List[str] = self._config.post_labels
self._languages: List[str] = self._config.languages
self._null_token = self._config.get("null_token", "<NULL>")
def _setup_dataloader(self, texts: List[str], batch_size_tokens: int, overlap: int) -> DataLoader:
dataset: TextInferenceDataset = TextInferenceDataset(
texts=texts,
batch_size_tokens=batch_size_tokens,
overlap=overlap,
max_length=self._max_len,
spe_model_path=self._spe_path,
)
return DataLoader(
dataset=dataset,
collate_fn=dataset.collate_fn,
batch_sampler=dataset.sampler,
)
def punctuation_removal(self, texts: List[str]) -> List[str]:
punkt = string.punctuation + """`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…–ـ""" + """!?。。"""
punkt = punkt.replace("-", "")
punkt = punkt.replace("'", "")
punkt += "„“"
return [text.translate(str.maketrans("", "", punkt)).lower().strip() for text in texts]
def infer(
self,
texts: List[str],
apply_sbd: bool = False,
batch_size_tokens: int = 4096,
overlap: int = 16,
) -> Union[List[str], List[List[str]]]:
texts = self.punctuation_removal(texts)
collectors: List[PunctCapCollector] = [
PunctCapCollector(sp_model=self._tokenizer, apply_sbd=apply_sbd, overlap=overlap)
for _ in range(len(texts))
]
dataloader: DataLoader = self._setup_dataloader(texts=texts, batch_size_tokens=batch_size_tokens, overlap=overlap)
for batch in dataloader:
input_ids, batch_indices, input_indices, lengths = batch
pre_preds, post_preds, cap_preds, seg_preds = self._ort_session.run(None, {"input_ids": input_ids.numpy()})
batch_size = input_ids.shape[0]
for i in range(batch_size):
length = lengths[i].item()
batch_idx = batch_indices[i].item()
input_idx = input_indices[i].item()
segment_ids = input_ids[i, 1 : length - 1].tolist()
segment_pre_preds = pre_preds[i, 1 : length - 1].tolist()
segment_post_preds = post_preds[i, 1 : length - 1].tolist()
segment_cap_preds = cap_preds[i, 1 : length - 1].tolist()
segment_sbd_preds = seg_preds[i, 1 : length - 1].tolist()
pre_tokens = [self._pre_labels[i] for i in segment_pre_preds]
post_tokens = [self._post_labels[i] for i in segment_post_preds]
pre_tokens = [x if x != self._null_token else None for x in pre_tokens]
post_tokens = [x if x != self._null_token else None for x in post_tokens]
collectors[batch_idx].collect(
ids=segment_ids,
pre_preds=pre_tokens,
post_preds=post_tokens,
cap_preds=segment_cap_preds,
sbd_preds=segment_sbd_preds,
idx=input_idx,
)
outputs: Union[List[str], List[List[str]]] = [x.produce() for x in collectors]
return outputs
@dataclass
class TokenizedSegment:
input_ids: List[int]
batch_idx: int
input_idx: int
def __len__(self) -> int:
return len(self.input_ids)
class TokenBatchSampler(Iterable):
def __init__(self, segments: List[TokenizedSegment], batch_size_tokens: int):
self._batches = self._make_batches(segments, batch_size_tokens)
def _make_batches(self, segments: List[TokenizedSegment], batch_size_tokens: int) -> List[List[int]]:
segments_with_index = [(segment, i) for i, segment in enumerate(segments)]
segments_with_index.sort(key=lambda x: len(x[0]), reverse=True)
batches, current_batch_elements, current_max_len = [], [], 0
for segment, idx in segments_with_index:
potential_max_len = max(current_max_len, len(segment))
if potential_max_len * (len(current_batch_elements) + 1) > batch_size_tokens:
batches.append(current_batch_elements)
current_batch_elements, current_max_len = [], 0
current_batch_elements.append(idx)
current_max_len = potential_max_len
if current_batch_elements:
batches.append(current_batch_elements)
return batches
def __iter__(self) -> Iterator:
yield from self._batches
def __len__(self) -> int:
return len(self._batches)
class TextInferenceDataset(Dataset):
def __init__(
self,
texts: List[str],
spe_model_path: str,
batch_size_tokens: int = 4096,
max_length: int = 512,
overlap: int = 32,
):
self._spe_model = SentencePieceProcessor(spe_model_path)
self._segments = self._tokenize_inputs(texts, max_length, overlap)
self._sampler = TokenBatchSampler(self._segments, batch_size_tokens)
@property
def sampler(self) -> Iterable:
return self._sampler
def _tokenize_inputs(self, texts: List[str], max_len: int, overlap: int) -> List[TokenizedSegment]:
max_len -= 2
segments = []
for batch_idx, text in enumerate(texts):
ids, start, input_idx = self._spe_model.EncodeAsIds(text), 0, 0
while start < len(ids):
adjusted_start = start - overlap if input_idx else 0
segments.append(
TokenizedSegment(
ids[adjusted_start : adjusted_start + max_len],
batch_idx,
input_idx,
)
)
start += max_len - overlap
input_idx += 1
return segments
def __len__(self) -> int:
return len(self._segments)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int, int]:
segment = self._segments[idx]
input_ids = torch.Tensor([self._spe_model.bos_id(), *segment.input_ids, self._spe_model.eos_id()])
return input_ids, segment.batch_idx, segment.input_idx
def collate_fn(self, batch: List[Tuple[torch.Tensor, int, int]]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
input_ids = [x[0] for x in batch]
lengths = torch.tensor([x.shape[0] for x in input_ids])
max_len = lengths.max().item()
batched_ids = torch.full((len(input_ids), max_len), self._spe_model.pad_id())
for idx, ids in enumerate(input_ids):
batched_ids[idx, : lengths[idx]] = ids
return (
batched_ids,
torch.tensor([x[1] for x in batch]),
torch.tensor([x[2] for x in batch]),
lengths,
)
@dataclass
class PCSegment:
ids: List[int]
pre_preds: List[Optional[str]]
post_preds: List[Optional[str]]
cap_preds: List[List[int]]
sbd_preds: List[int]
def __len__(self):
return len(self.ids)
class PunctCapCollector:
def __init__(self, apply_sbd: bool, overlap: int, sp_model: SentencePieceProcessor):
self._segments: Dict[int, PCSegment] = {}
self._apply_sbd = apply_sbd
self._overlap = overlap
self._sp_model = sp_model
def collect(
self,
ids: List[int],
pre_preds: List[Optional[str]],
post_preds: List[Optional[str]],
sbd_preds: List[int],
cap_preds: List[List[int]],
idx: int,
):
self._segments[idx] = PCSegment(
ids=ids,
pre_preds=pre_preds,
post_preds=post_preds,
sbd_preds=sbd_preds,
cap_preds=cap_preds,
)
def produce(self) -> Union[List[str], str]:
ids: List[int] = []
pre_preds: List[Optional[str]] = []
post_preds: List[Optional[str]] = []
cap_preds: List[List[int]] = []
sbd_preds: List[int] = []
for i in range(len(self._segments)):
segment = self._segments[i]
start = 0
stop = len(segment)
if i > 0:
start += self._overlap // 2
if i < len(self._segments) - 1:
stop -= self._overlap // 2
ids.extend(segment.ids[start:stop])
pre_preds.extend(segment.pre_preds[start:stop])
post_preds.extend(segment.post_preds[start:stop])
sbd_preds.extend(segment.sbd_preds[start:stop])
cap_preds.extend(segment.cap_preds[start:stop])
input_tokens = [self._sp_model.IdToPiece(x) for x in ids]
output_texts: List[str] = []
current_chars: List[str] = []
for token_idx, token in enumerate(input_tokens):
if token.startswith("▁") and current_chars:
current_chars.append(" ")
char_start = 1 if token.startswith("▁") else 0
for token_char_idx, char in enumerate(token[char_start:], start=char_start):
if token_char_idx == char_start and pre_preds[token_idx] is not None:
current_chars.append(pre_preds[token_idx])
if cap_preds[token_idx][token_char_idx]:
char = char.upper()
current_chars.append(char)
label = post_preds[token_idx]
if label == ACRONYM_TOKEN:
current_chars.append(".")
elif token_char_idx == len(token) - 1 and post_preds[token_idx] is not None:
current_chars.append(post_preds[token_idx])
if self._apply_sbd and token_char_idx == len(token) - 1 and sbd_preds[token_idx]:
output_texts.append("".join(current_chars))
current_chars = []
if current_chars:
output_texts.append("".join(current_chars))
if not self._apply_sbd:
if len(output_texts) > 1:
raise ValueError(f"Not applying SBD but got more than one result: {output_texts}")
return output_texts[0]
return output_texts
class MultiLingual:
def __init__(self):
cfg = PunctCapConfigONNX(directory="/code/models/multilingual")
self._punctuator = PunctCapModelONNX(cfg)
def punctuate(self, data: str) -> str:
return self._punctuator.infer([data])[0]
|