#!/usr/bin/env python import os import torch import string import onnxruntime as ort from dataclasses import dataclass from omegaconf import OmegaConf from typing import List, Optional, Union, Dict from sentencepiece import SentencePieceProcessor from torch.utils.data import Dataset, DataLoader from typing import Iterator, List, Iterable, Tuple ACRONYM_TOKEN = "" torch.set_grad_enabled(False) torch.backends.cudnn.enabled = False os.environ["CUDA_VISIBLE_DEVICES"] = "-1" @dataclass class PunctCapConfigONNX: spe_filename: str = "xlm_roberta_encoding.model" model_filename: str = "nemo_model.onnx" config_filename: str = "config.yaml" directory: Optional[str] = None class PunctCapModelONNX: def __init__(self, cfg: PunctCapConfigONNX): self._spe_path = os.path.join(cfg.directory, cfg.spe_filename) onnx_path = os.path.join(cfg.directory, cfg.model_filename) config_path = os.path.join(cfg.directory, cfg.config_filename) self._tokenizer: SentencePieceProcessor = SentencePieceProcessor(self._spe_path) self._ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path) self._config = OmegaConf.load(config_path) self._max_len = self._config.max_length self._pre_labels: List[str] = self._config.pre_labels self._post_labels: List[str] = self._config.post_labels self._languages: List[str] = self._config.languages self._null_token = self._config.get("null_token", "") def _setup_dataloader(self, texts: List[str], batch_size_tokens: int, overlap: int) -> DataLoader: dataset: TextInferenceDataset = TextInferenceDataset( texts=texts, batch_size_tokens=batch_size_tokens, overlap=overlap, max_length=self._max_len, spe_model_path=self._spe_path, ) return DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_sampler=dataset.sampler, ) def punctuation_removal(self, texts: List[str]) -> List[str]: punkt = string.punctuation + """`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…–ـ""" + """!?。。""" punkt = punkt.replace("-", "") punkt = punkt.replace("'", "") punkt += "„“" return [text.translate(str.maketrans("", "", punkt)).lower().strip() for text in texts] def infer( self, texts: List[str], apply_sbd: bool = False, batch_size_tokens: int = 4096, overlap: int = 16, ) -> Union[List[str], List[List[str]]]: texts = self.punctuation_removal(texts) collectors: List[PunctCapCollector] = [ PunctCapCollector(sp_model=self._tokenizer, apply_sbd=apply_sbd, overlap=overlap) for _ in range(len(texts)) ] dataloader: DataLoader = self._setup_dataloader(texts=texts, batch_size_tokens=batch_size_tokens, overlap=overlap) for batch in dataloader: input_ids, batch_indices, input_indices, lengths = batch pre_preds, post_preds, cap_preds, seg_preds = self._ort_session.run(None, {"input_ids": input_ids.numpy()}) batch_size = input_ids.shape[0] for i in range(batch_size): length = lengths[i].item() batch_idx = batch_indices[i].item() input_idx = input_indices[i].item() segment_ids = input_ids[i, 1 : length - 1].tolist() segment_pre_preds = pre_preds[i, 1 : length - 1].tolist() segment_post_preds = post_preds[i, 1 : length - 1].tolist() segment_cap_preds = cap_preds[i, 1 : length - 1].tolist() segment_sbd_preds = seg_preds[i, 1 : length - 1].tolist() pre_tokens = [self._pre_labels[i] for i in segment_pre_preds] post_tokens = [self._post_labels[i] for i in segment_post_preds] pre_tokens = [x if x != self._null_token else None for x in pre_tokens] post_tokens = [x if x != self._null_token else None for x in post_tokens] collectors[batch_idx].collect( ids=segment_ids, pre_preds=pre_tokens, post_preds=post_tokens, cap_preds=segment_cap_preds, sbd_preds=segment_sbd_preds, idx=input_idx, ) outputs: Union[List[str], List[List[str]]] = [x.produce() for x in collectors] return outputs @dataclass class TokenizedSegment: input_ids: List[int] batch_idx: int input_idx: int def __len__(self) -> int: return len(self.input_ids) class TokenBatchSampler(Iterable): def __init__(self, segments: List[TokenizedSegment], batch_size_tokens: int): self._batches = self._make_batches(segments, batch_size_tokens) def _make_batches(self, segments: List[TokenizedSegment], batch_size_tokens: int) -> List[List[int]]: segments_with_index = [(segment, i) for i, segment in enumerate(segments)] segments_with_index.sort(key=lambda x: len(x[0]), reverse=True) batches, current_batch_elements, current_max_len = [], [], 0 for segment, idx in segments_with_index: potential_max_len = max(current_max_len, len(segment)) if potential_max_len * (len(current_batch_elements) + 1) > batch_size_tokens: batches.append(current_batch_elements) current_batch_elements, current_max_len = [], 0 current_batch_elements.append(idx) current_max_len = potential_max_len if current_batch_elements: batches.append(current_batch_elements) return batches def __iter__(self) -> Iterator: yield from self._batches def __len__(self) -> int: return len(self._batches) class TextInferenceDataset(Dataset): def __init__( self, texts: List[str], spe_model_path: str, batch_size_tokens: int = 4096, max_length: int = 512, overlap: int = 32, ): self._spe_model = SentencePieceProcessor(spe_model_path) self._segments = self._tokenize_inputs(texts, max_length, overlap) self._sampler = TokenBatchSampler(self._segments, batch_size_tokens) @property def sampler(self) -> Iterable: return self._sampler def _tokenize_inputs(self, texts: List[str], max_len: int, overlap: int) -> List[TokenizedSegment]: max_len -= 2 segments = [] for batch_idx, text in enumerate(texts): ids, start, input_idx = self._spe_model.EncodeAsIds(text), 0, 0 while start < len(ids): adjusted_start = start - overlap if input_idx else 0 segments.append( TokenizedSegment( ids[adjusted_start : adjusted_start + max_len], batch_idx, input_idx, ) ) start += max_len - overlap input_idx += 1 return segments def __len__(self) -> int: return len(self._segments) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int, int]: segment = self._segments[idx] input_ids = torch.Tensor([self._spe_model.bos_id(), *segment.input_ids, self._spe_model.eos_id()]) return input_ids, segment.batch_idx, segment.input_idx def collate_fn(self, batch: List[Tuple[torch.Tensor, int, int]]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: input_ids = [x[0] for x in batch] lengths = torch.tensor([x.shape[0] for x in input_ids]) max_len = lengths.max().item() batched_ids = torch.full((len(input_ids), max_len), self._spe_model.pad_id()) for idx, ids in enumerate(input_ids): batched_ids[idx, : lengths[idx]] = ids return ( batched_ids, torch.tensor([x[1] for x in batch]), torch.tensor([x[2] for x in batch]), lengths, ) @dataclass class PCSegment: ids: List[int] pre_preds: List[Optional[str]] post_preds: List[Optional[str]] cap_preds: List[List[int]] sbd_preds: List[int] def __len__(self): return len(self.ids) class PunctCapCollector: def __init__(self, apply_sbd: bool, overlap: int, sp_model: SentencePieceProcessor): self._segments: Dict[int, PCSegment] = {} self._apply_sbd = apply_sbd self._overlap = overlap self._sp_model = sp_model def collect( self, ids: List[int], pre_preds: List[Optional[str]], post_preds: List[Optional[str]], sbd_preds: List[int], cap_preds: List[List[int]], idx: int, ): self._segments[idx] = PCSegment( ids=ids, pre_preds=pre_preds, post_preds=post_preds, sbd_preds=sbd_preds, cap_preds=cap_preds, ) def produce(self) -> Union[List[str], str]: ids: List[int] = [] pre_preds: List[Optional[str]] = [] post_preds: List[Optional[str]] = [] cap_preds: List[List[int]] = [] sbd_preds: List[int] = [] for i in range(len(self._segments)): segment = self._segments[i] start = 0 stop = len(segment) if i > 0: start += self._overlap // 2 if i < len(self._segments) - 1: stop -= self._overlap // 2 ids.extend(segment.ids[start:stop]) pre_preds.extend(segment.pre_preds[start:stop]) post_preds.extend(segment.post_preds[start:stop]) sbd_preds.extend(segment.sbd_preds[start:stop]) cap_preds.extend(segment.cap_preds[start:stop]) input_tokens = [self._sp_model.IdToPiece(x) for x in ids] output_texts: List[str] = [] current_chars: List[str] = [] for token_idx, token in enumerate(input_tokens): if token.startswith("▁") and current_chars: current_chars.append(" ") char_start = 1 if token.startswith("▁") else 0 for token_char_idx, char in enumerate(token[char_start:], start=char_start): if token_char_idx == char_start and pre_preds[token_idx] is not None: current_chars.append(pre_preds[token_idx]) if cap_preds[token_idx][token_char_idx]: char = char.upper() current_chars.append(char) label = post_preds[token_idx] if label == ACRONYM_TOKEN: current_chars.append(".") elif token_char_idx == len(token) - 1 and post_preds[token_idx] is not None: current_chars.append(post_preds[token_idx]) if self._apply_sbd and token_char_idx == len(token) - 1 and sbd_preds[token_idx]: output_texts.append("".join(current_chars)) current_chars = [] if current_chars: output_texts.append("".join(current_chars)) if not self._apply_sbd: if len(output_texts) > 1: raise ValueError(f"Not applying SBD but got more than one result: {output_texts}") return output_texts[0] return output_texts class MultiLingual: def __init__(self): cfg = PunctCapConfigONNX(directory="/code/models/multilingual") self._punctuator = PunctCapModelONNX(cfg) def punctuate(self, data: str) -> str: return self._punctuator.infer([data])[0]