Spaces:
Build error
Build error
App_Added
Browse files- app.py +58 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Installing Gradio
|
2 |
+
!pip install gradio transformers -q
|
3 |
+
|
4 |
+
# Import the required Libraries
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import pickle
|
9 |
+
import transformers
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
from transformers import AutoConfig
|
12 |
+
from transformers import AutoModelForSequenceClassification
|
13 |
+
from transformers import TFAutoModelForSequenceClassification
|
14 |
+
from transformers import pipeline
|
15 |
+
from scipy.special import softmax
|
16 |
+
|
17 |
+
# Requirements
|
18 |
+
model_path ="HOLYBOY/Sentiment_Analysis_distilBERT"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
config = AutoConfig.from_pretrained(model_path)
|
21 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
22 |
+
|
23 |
+
# Preprocess text (username and link placeholders)
|
24 |
+
def preprocess(text):
|
25 |
+
new_text = []
|
26 |
+
for t in text.split(" "):
|
27 |
+
t = "@user" if t.startswith("@") and len(t) > 1 else t
|
28 |
+
t = "http" if t.startswith("http") else t
|
29 |
+
new_text.append(t)
|
30 |
+
return " ".join(new_text)
|
31 |
+
|
32 |
+
# ---- Function to process the input and return prediction
|
33 |
+
def sentiment_analysis(text):
|
34 |
+
text = preprocess(text)
|
35 |
+
|
36 |
+
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
|
37 |
+
output = model(**encoded_input)
|
38 |
+
scores_ = output[0][0].detach().numpy()
|
39 |
+
scores_ = softmax(scores_)
|
40 |
+
|
41 |
+
# Format output dict of scores
|
42 |
+
labels = ["Negative", "Neutral", "Positive"]
|
43 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
44 |
+
|
45 |
+
return scores
|
46 |
+
|
47 |
+
|
48 |
+
# ---- Gradio app interface
|
49 |
+
app = gr.Interface(fn = sentiment_analysis,
|
50 |
+
inputs = gr.Textbox("Write your text or tweet here..."),
|
51 |
+
outputs = "label",
|
52 |
+
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
|
53 |
+
description = "To vaccinate or not? This app analyzes sentiment of text based on tweets tweets about COVID-19 Vaccines using a fine-tuned roBERTA model",
|
54 |
+
interpretation = "default",
|
55 |
+
examples = [["The idea of a vaccine in record time sure sounds interesting!"]]
|
56 |
+
)
|
57 |
+
|
58 |
+
app.launch()
|
requirements.txt
ADDED
File without changes
|