Spaces:
Running
Running
File size: 6,007 Bytes
8279c69 f87af8c 8279c69 e90a921 8279c69 b29080a 8279c69 1dd4981 e90a921 2caba59 8279c69 e90a921 8279c69 0cd6b71 8279c69 1dd4981 8279c69 0cd6b71 8279c69 ce56756 2084a51 90e4f53 19be6e8 90e4f53 724b603 02d2df4 724b603 8279c69 f87af8c 8279c69 14b9a92 8279c69 ce56756 14b9a92 ce56756 a6f835f 8279c69 8cbec0c 8279c69 9bf9415 8279c69 8cbec0c 8279c69 a877740 8279c69 f36db65 cd01954 19be6e8 8279c69 9651f63 02d2df4 c81f62d 8279c69 81e39b1 8279c69 091e498 8279c69 8c2ce19 8279c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from inference import Inference
import PIL
from PIL import Image
import pandas as pd
import random
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import IPythonConsole
import shutil
import os
class DrugGENConfig:
submodel='DrugGEN'
inference_model="experiments/models/DrugGEN/"
sample_num=1000
inf_dataset_file="chembl45_test.pt"
inf_raw_file='data/chembl_test.smi'
inf_batch_size=1
mol_data_dir='data'
features=False
act='relu'
max_atom=45
dim=128
depth=1
heads=8
mlp_ratio=3
dropout=0.
log_sample_step=100
set_seed=True
seed=10
correct=True
class NoTargetConfig(DrugGENConfig):
submodel="NoTarget"
dim=128
inference_model="experiments/models/NoTarget/"
model_configs = {
"DrugGEN": DrugGENConfig(),
"NoTarget": NoTargetConfig(),
}
def function(model_name: str, num_molecules: int, seed_num: int) -> tuple[PIL.Image, pd.DataFrame, str]:
'''
Returns:
image, score_df, file path
'''
if model_name == "DrugGEN-NoTarget":
model_name = "NoTarget"
config = model_configs[model_name]
config.sample_num = num_molecules
if config.sample_num > 250:
raise gr.Error("You have requested to generate more than the allowed limit of 250 molecules. Please reduce your request to 250 or fewer.")
if seed_num is None or seed_num.strip() == "":
config.seed = random.randint(0, 10000)
else:
try:
config.seed = int(seed_num)
except ValueError:
raise gr.Error("The seed must be an integer value!")
inferer = Inference(config)
scores = inferer.inference() # create scores_df out of this
score_df = pd.DataFrame(scores, index=[0])
output_file_path = f'experiments/inference/{model_name}/inference_drugs.txt'
new_path = f'{model_name}_denovo_mols.smi'
os.rename(output_file_path, new_path)
with open(new_path) as f:
inference_drugs = f.read()
generated_molecule_list = inference_drugs.split("\n")[:-1]
rng = random.Random(config.seed)
if num_molecules > 12:
selected_molecules = rng.choices(generated_molecule_list, k=12)
else:
selected_molecules = generated_molecule_list
selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules if Chem.MolFromSmiles(mol) is not None]
drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
drawOptions.prepareMolsBeforeDrawing = False
drawOptions.bondLineWidth = 0.5
molecule_image = Draw.MolsToGridImage(
selected_molecules,
molsPerRow=3,
subImgSize=(400, 400),
maxMols=len(selected_molecules),
# legends=None,
returnPNG=False,
drawOptions=drawOptions,
highlightAtomLists=None,
highlightBondLists=None,
)
return molecule_image, score_df, new_path
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
with gr.Row():
gr.Markdown("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868)")
gr.Markdown("[![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
with gr.Accordion("Expand to display information about models", open=False):
gr.Markdown("""
### Model Variations
- **DrugGEN** is the default model. The input of the generator is the real molecules (ChEMBL) dataset (to ease the learning process) and the discriminator compares the generated molecules with the real inhibitors of the given target protein.
- **DrugGEN-NoTarget** is the non-target-specific version of DrugGEN. This model only focuses on learning the chemical properties from the ChEMBL training dataset.
""")
model_name = gr.Radio(
choices=("DrugGEN", "DrugGEN-NoTarget"),
value="DrugGEN",
label="Select a model to make inference",
info=str("DrugGEN model designs small molecules to target the human AKT1 protein (UniProt id: P31749)." + '\n'
+ "DrugGEN-NoTarget model designs random drug-like small molecules.")
)
num_molecules = gr.Number(
label="Number of molecules to generate",
precision=0, # integer input
minimum=1,
value=100,
maximum=999999,
info="This space runs on a CPU, which may result in slower performance. Generating 200 molecules takes approximately 6 minutes. Therefore, We set a 250-molecule cap. On a GPU, the model can generate 10,000 molecules in the same amount of time. Please check our GitHub repo for running our models on GPU."
)
seed_num = gr.Textbox(
label="RNG seed value",
value=None,
info="This is optional, it can be used for reproducibility."
)
submit_button = gr.Button(
value="Start Generating"
)
with gr.Column(scale=2):
scores_df = gr.Dataframe(
label="Scores",
headers=["Runtime (seconds)", "Validity", "Uniqueness", "Novelty (Train)", "Novelty (Inference)"]
)
file_download = gr.File(
label="Click to download generated molecules",
)
image_output = gr.Image(
label="Structures of randomly selected de novo molecules from the inference set:"
)
submit_button.click(function, inputs=[model_name, num_molecules, seed_num], outputs=[image_output, scores_df, file_download], api_name="inference")
#demo.queue(concurrency_count=1)
demo.queue()
demo.launch()
|