File size: 5,341 Bytes
8279c69
 
 
 
 
 
 
4e04e76
8279c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e04e76
 
8279c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e04e76
8279c69
 
 
4e04e76
8279c69
 
4e04e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8279c69
 
 
 
 
 
 
 
 
 
 
 
 
4e04e76
 
8279c69
 
 
 
 
 
 
 
4e04e76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
from layers import TransformerEncoder

class Generator(nn.Module):
    """Generator network."""

    def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
        super(Generator, self).__init__()
        self.vertexes = vertexes
        self.edges = edges
        self.nodes = nodes
        self.depth = depth
        self.dim = dim
        self.heads = heads
        self.mlp_ratio = mlp_ratio
        self.dropout = dropout

        if act == "relu":
            act = nn.ReLU()
        elif act == "leaky":
            act = nn.LeakyReLU()
        elif act == "sigmoid":
            act = nn.Sigmoid()
        elif act == "tanh":
            act = nn.Tanh()

        self.features = vertexes * vertexes * edges + vertexes * nodes
        self.transformer_dim = vertexes * vertexes * dim + vertexes * dim
        self.pos_enc_dim = 5

        self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
        self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
        self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
                                                                    mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)

        self.readout_e = nn.Linear(self.dim, edges)
        self.readout_n = nn.Linear(self.dim, nodes)
        self.softmax = nn.Softmax(dim = -1)

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def laplacian_positional_enc(self, adj):
        A = adj
        D = torch.diag(torch.count_nonzero(A, dim=-1))
        L = torch.eye(A.shape[0], device=A.device) - D * A * D

        EigVal, EigVec = torch.linalg.eig(L)
        idx = torch.argsort(torch.real(EigVal))
        EigVal, EigVec = EigVal[idx], torch.real(EigVec[:,idx])
        pos_enc = EigVec[:,1:self.pos_enc_dim + 1]
        return pos_enc

    def forward(self, z_e, z_n):
        b, n, c = z_n.shape
        _, _, _ , d = z_e.shape

        node = self.node_layers(z_n)
        edge = self.edge_layers(z_e)
        edge = (edge + edge.permute(0, 2, 1, 3)) / 2

        node, edge = self.TransformerEncoder(node, edge)

        node_sample = self.readout_n(node)
        edge_sample = self.readout_e(edge)

        return node, edge, node_sample, edge_sample

class Discriminator(nn.Module):
    
    def __init__(self, act, vertexes, edges, nodes, dropout, dim, depth, heads, mlp_ratio):
        super(Discriminator, self).__init__()
        self.vertexes = vertexes
        self.edges = edges
        self.nodes = nodes
        self.depth = depth
        self.dim = dim
        self.heads = heads
        self.mlp_ratio = mlp_ratio
        self.dropout = dropout

        if act == "relu":
            act = nn.ReLU()
        elif act == "leaky":
            act = nn.LeakyReLU()
        elif act == "sigmoid":
            act = nn.Sigmoid()
        elif act == "tanh":
            act = nn.Tanh()

        self.features = vertexes * vertexes * edges + vertexes * nodes
        self.transformer_dim = vertexes * vertexes * dim + vertexes * dim

        self.node_layers = nn.Sequential(nn.Linear(nodes, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
        self.edge_layers = nn.Sequential(nn.Linear(edges, 64), act, nn.Linear(64, dim), act, nn.Dropout(self.dropout))
        self.TransformerEncoder = TransformerEncoder(dim=self.dim, depth=self.depth, heads=self.heads, act = act,
                                                                    mlp_ratio=self.mlp_ratio, drop_rate=self.dropout)
        self.node_features = vertexes * dim
        self.edge_features = vertexes * vertexes * dim
        self.node_mlp = nn.Sequential(nn.Linear(self.node_features, 64), act, nn.Linear(64, 32), act, nn.Linear(32, 16), act, nn.Linear(16, 1))

    def forward(self, z_e, z_n):
        b, n, c = z_n.shape
        _, _, _ , d = z_e.shape

        node = self.node_layers(z_n)
        edge = self.edge_layers(z_e)
        edge = (edge + edge.permute(0, 2, 1, 3)) / 2

        node, edge = self.TransformerEncoder(node, edge)

        node = node.view(b, -1)

        prediction = self.node_mlp(node)

        return prediction

class simple_disc(nn.Module):
    def __init__(self, act, m_dim, vertexes, b_dim):
        super().__init__()

        if act == "relu":
            act = nn.ReLU()
        elif act == "leaky":
            act = nn.LeakyReLU()
        elif act == "sigmoid":
            act = nn.Sigmoid()
        elif act == "tanh":
            act = nn.Tanh()
        else:
            raise ValueError("Unsupported activation function: {}".format(act))

        features = vertexes * m_dim + vertexes * vertexes * b_dim
        self.predictor = nn.Sequential(nn.Linear(features,256), act, nn.Linear(256,128), act, nn.Linear(128,64), act,
                                       nn.Linear(64,32), act, nn.Linear(32,16), act,
                                       nn.Linear(16,1))

    def forward(self, x):
        prediction = self.predictor(x)
        return prediction