Spaces:
Sleeping
Sleeping
import os | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from langchain.memory import ConversationBufferMemory | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import RetrievalQAWithSourcesChain | |
from huggingface_hub import notebook_login | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from langchain import HuggingFacePipeline | |
from langchain.text_splitter import CharacterTextSplitter | |
import textwrap | |
import sys | |
import torch | |
os.environ['HuggingFaceHub_API_Token']= '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' | |
loader = UnstructuredFileLoader('Highway Traffic Act, R.S.O. 1990, c. H.8.pdf') | |
documents = loader.load() | |
print("Hello") | |
text_splitter=CharacterTextSplitter(separator='\n',chunk_size=1500,chunk_overlap=300) | |
text_chunks=text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',model_kwargs={'device': 'cuda'}) | |
vectorstore=FAISS.from_documents(text_chunks, embeddings) | |
notebook_login() | |
os.environ['HuggingFaceHub_API_Token']= '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' | |
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf") | |
model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf", device_map='auto',torch_dtype=torch.float16,load_in_4bit=True, token=True ) | |
pipe = pipeline("text-generation",model=model,tokenizer= tokenizer,torch_dtype=torch.bfloat16,device_map="auto",max_new_tokens = 1024,do_sample=True,top_k=10,num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) | |
llm=HuggingFacePipeline(pipeline=pipe, model_kwargs={'temperature':0.5}) | |
chain = RetrievalQA.from_chain_type(llm=llm, chain_type = "stuff",return_source_documents=True, retriever=vectorstore.as_retriever()) | |
query = "Can goat and paint be transported in same truck ?" | |
result=chain({"query": query}, return_only_outputs=True) | |
wrapped_text = textwrap.fill(result['result'], width=500) | |
wrapped_text |