Hafizhzpa commited on
Commit
40be699
1 Parent(s): 5e774dc

add load_model and delete init

Browse files
Files changed (1) hide show
  1. app.py +7 -11
app.py CHANGED
@@ -10,12 +10,13 @@ from bs4 import BeautifulSoup
10
 
11
  class NewsAnalytic():
12
  @st.cache_resource
13
- def __init__(self):
14
- self.model = T5ForZeroShotClassification.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
15
- self.tokenizer = T5Tokenizer.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
16
- self.classifier = ZeroShotClassificationPipeline(model=self.model, tokenizer=self.tokenizer,ypothesis_template = '{}', encoder_decoder = True)
17
  nltk.download("punkt")
18
  print("load model berhasil!")
 
19
  def anoted_sentence(self,content,candidate_labels):
20
  sentences = nltk.sent_tokenize(content)
21
  sentences = [sent for sent in sentences if "simak" not in sent.lower()]
@@ -46,6 +47,7 @@ class NewsAnalytic():
46
  print("mendapatkan konten berita berhasil!")
47
  return {'title': title.strip(), 'content': content.strip()}
48
  def streamlit_run(self):
 
49
  st.markdown("<h2 style='text-align: center;'>Indonesian News Analytic </h2>", unsafe_allow_html=True)
50
  st.markdown("<p style='text-align: center;'>Hafizh Zaki Prasetyo Adi|[email protected]|https://www.linkedin.com/in/hafizhzpa/ </p>", unsafe_allow_html=True)
51
  part=st.sidebar.radio("input_type",["content", "link"],captions = ["input news content", "input news link"])
@@ -66,10 +68,4 @@ class NewsAnalytic():
66
  result_category=self.classifier(text, ["Politik","Ekonomi","Hukum dan Kriminal","Teknologi","Pendidikan","Kesehatan","Olahraga","Hiburan","Gaya Hidup","Lingkungan","Transportasi","Pariwisata"])
67
  st.text(f"category: {result_category['labels'][0]}")
68
  result_region=self.classifier(text, ["regional","nasional","internasional"])
69
- st.text(f"region: {result_region['labels'][0]}")
70
-
71
-
72
-
73
- if __name__=="__main__":
74
- pipeline=NewsAnalytic()
75
- pipeline.streamlit_run()
 
10
 
11
  class NewsAnalytic():
12
  @st.cache_resource
13
+ def load_model(self):
14
+ model = T5ForZeroShotClassification.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
15
+ tokenizer = T5Tokenizer.from_pretrained('knowledgator/comprehend_it-multilingual-t5-base')
16
+ classifier = ZeroShotClassificationPipeline(model=model, tokenizer=tokenizer,ypothesis_template = '{}', encoder_decoder = True)
17
  nltk.download("punkt")
18
  print("load model berhasil!")
19
+ return classifier
20
  def anoted_sentence(self,content,candidate_labels):
21
  sentences = nltk.sent_tokenize(content)
22
  sentences = [sent for sent in sentences if "simak" not in sent.lower()]
 
47
  print("mendapatkan konten berita berhasil!")
48
  return {'title': title.strip(), 'content': content.strip()}
49
  def streamlit_run(self):
50
+ self.classifier=self.load_model()
51
  st.markdown("<h2 style='text-align: center;'>Indonesian News Analytic </h2>", unsafe_allow_html=True)
52
  st.markdown("<p style='text-align: center;'>Hafizh Zaki Prasetyo Adi|[email protected]|https://www.linkedin.com/in/hafizhzpa/ </p>", unsafe_allow_html=True)
53
  part=st.sidebar.radio("input_type",["content", "link"],captions = ["input news content", "input news link"])
 
68
  result_category=self.classifier(text, ["Politik","Ekonomi","Hukum dan Kriminal","Teknologi","Pendidikan","Kesehatan","Olahraga","Hiburan","Gaya Hidup","Lingkungan","Transportasi","Pariwisata"])
69
  st.text(f"category: {result_category['labels'][0]}")
70
  result_region=self.classifier(text, ["regional","nasional","internasional"])
71
+ st.text(f"region: {result_region['labels'][0]}")