import streamlit as st import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name_or_path = "sberbank-ai/rugpt3small_based_on_gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path) model = GPT2LMHeadModel.from_pretrained( model_name_or_path, output_attentions = False, output_hidden_states = False, ) # Загрузка сохраненных весов model_weights_path = "nlp_project/hunter_generator.pt" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load(model_weights_path, map_location=device)) model.eval() def generate_text(user_input, model=model, tokenizer=tokenizer): input_ids = tokenizer.encode(user_input, return_tensors="pt") with torch.no_grad(): out = model.generate( input_ids, do_sample=True, num_beams=3, temperature=1.05, top_p=.8, max_length=50, ) generated_text = list(map(tokenizer.decode, out))[0] return generated_text