Spaces:
Running
Running
File size: 16,423 Bytes
7f2db85 535c2fb 25bff98 7f2db85 25bff98 7f2db85 25bff98 7f2db85 25bff98 7f2db85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import gradio as gr
from transformers import pipeline, AutoTokenizer
from classifier import MistralForSequenceClassification
import torch
import nltk
import json
import pandas as pd
import plotly.graph_objects as go
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import io
import base64
from PIL import Image
from nltk import bigrams
import malaya
from collections import Counter
import os
HF_TOKEN = os.getenv('hf_token')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN,'aisyahhrazak/tpb-crowdsourced-dataset')
with open('en.json') as fopen:
en = json.load(fopen)
stopwords = malaya.text.function.get_stopwords()
stopwords = stopwords + en + ['lor', 'quote','Quote','QUOTE','pm', 'long', 'jer', 'time', 'feel', 'liao', 'wow', 'https', 'http', 've', 'ko', 'kena', 'post', 'ni', 'tu', 'don', 'je', 'jeh', 'la', 'tau', 'haha', 'hahaha', 'hahahaha']
stopwords += ['for me', 'to be', 'in the', 'me to', 'for me to']
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('vader_lexicon', quiet=True)
tokenizer_tpb = AutoTokenizer.from_pretrained('mesolitica/malaysian-mistral-191M-MLM-512')
model_tpb = MistralForSequenceClassification.from_pretrained('HalalFoodNLP/tpb-model-halal', torch_dtype=torch.bfloat16)
model_sentiment = MistralForSequenceClassification.from_pretrained('malaysia-ai/sentiment-mistral-191M-MLM', torch_dtype=torch.bfloat16)
pipeline_tpb = pipeline(task="text-classification", model=model_tpb, tokenizer=tokenizer_tpb)
sentiment_pipeline = pipeline("sentiment-analysis", model=model_sentiment, tokenizer=tokenizer_tpb)
data = []
with open('sentiment-tpb-dataset.jsonl', 'r') as file:
for line in file:
data.append(json.loads(line))
df = pd.DataFrame(data)
# Update the generate_wordcloud function to return a PIL Image object
def generate_wordcloud(text):
# Generate the word cloud
wordcloud = WordCloud(width=300, height=200, background_color='white').generate(text)
# Create the plot
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
# Save the plot to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
# Convert bytes buffer to PIL Image
image = Image.open(buf)
return image
# Add a function to generate bigrams
def generate_bigrams(text):
words = nltk.word_tokenize(text.lower())
words = [word for word in words if word.isalnum() and word not in stopwords]
bi_grams = list(bigrams(words))
return Counter(bi_grams).most_common(10)
def predict_decision(sentiment_label):
if sentiment_label == 'positive':
return "High likelihood of purchase"
elif sentiment_label == 'neutral':
return "Moderate likelihood of purchase"
else:
return "Low likelihood of purchase"
# Function to generate report based on TPB sentiment
def generate_report(tpb_sentiment_df):
report = "## TPB Factor Analysis and Recommendations Report\n\n"
for _, row in tpb_sentiment_df.iterrows():
tpb_label = row['tpb_label']
positive_percentage = row['positive']
negative_percentage = row['negative']
if negative_percentage > 70: # Only generate recommendations for positive < 70%
if tpb_label == "attitude":
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
report += """
**Current Issues:**
- High negative perception regarding product quality
- Concerns about halal certification and its authenticity
- Pricing issues in comparison to perceived value
**Recommended Actions:**
1. **Quality Control Improvements**
- Implement enhanced product quality measures
- Obtain globally recognized halal certifications
- Conduct regular quality audits
2. **Educational Campaigns**
- Educate customers on halal certification processes
- Raise awareness about the health benefits of halal products
- Highlight ethical and sustainable sourcing
3. **Pricing Strategy Adjustment**
- Reassess pricing to align with customer expectations
- Introduce discount programs or loyalty initiatives
"""
if tpb_label == "religious knowledge":
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
report += """
**Current Issues:**
- Lack of awareness and understanding about the halal process
- Customers may be unsure of the religious guidelines followed
**Recommended Actions:**
1. **Religious Knowledge Enhancement**
- Provide clear educational materials on the halal process
- Collaborate with religious scholars to endorse products
- Ensure transparent labeling and certification
2. **Community Engagement**
- Host webinars or community events about halal
- Partner with local religious organizations for outreach
- Share customer testimonials emphasizing trust in your certification
"""
if tpb_label == "subjective norms":
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
report += """
**Current Issues:**
- Social influence or peer pressure regarding halal compliance is weak
- Lack of community-driven recommendations for the product
**Recommended Actions:**
1. **Influence Social Circles**
- Engage community leaders or influencers to endorse products
- Create social campaigns around the halal certification to enhance peer recommendations
2. **Referral Programs**
- Introduce referral programs where existing customers can promote the product
- Offer incentives for customers who share their experiences with others
3. **Testimonials and Success Stories**
- Use customer testimonials and success stories to strengthen social trust
"""
if tpb_label == "perceived behavioural control":
report += f"### {tpb_label.capitalize()} ({negative_percentage:.1f}% Negative)\n"
report += """
**Current Issues:**
- Perceived difficulty in understanding or accessing halal-certified products
- Concerns about control over product quality and sourcing transparency
**Recommended Actions:**
1. **Improve Accessibility**
- Make halal products more accessible through multiple platforms (e-commerce, retail stores)
- Ensure ease of purchase and fast delivery options
2. **Enhance Transparency**
- Provide detailed information about sourcing and production processes
- Use blockchain or similar technology to enhance transparency in halal certification
3. **Customer Empowerment**
- Offer customer feedback channels to empower users to voice concerns and suggestions
- Ensure that concerns are addressed promptly to build trust and satisfaction
"""
return report
def search_company(keyword):
if not keyword:
return None, None, None, None
filtered_df = df[df['text'].str.contains(keyword, case=False)]
if filtered_df.empty:
return None, None, None, None
# Calculate sentiment distribution
sentiment_counts = filtered_df['label'].value_counts(normalize=True) * 100
colors = ['red' if sentiment == 'negative' else 'gray' if sentiment == 'neutral' else 'blue' for sentiment in sentiment_counts.index]
# Create the bar plot
sentiment_fig = go.Figure(data=[go.Bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
text=[f'{val:.1f}%' for val in sentiment_counts.values],
textposition='auto',
marker_color=colors
)])
sentiment_fig.update_layout(
title='Overall Sentiment Distribution',
xaxis_title='Sentiment',
yaxis_title='Percentage'
)
tpb_counts = filtered_df['tpb_label'].value_counts(normalize=True) * 100
tpb_fig = go.Figure(data=[go.Bar(
x=tpb_counts.index,
y=tpb_counts.values,
text=[f'{val:.1f}%' for val in tpb_counts.values],
textposition='auto'
)])
tpb_fig.update_layout(title='Overall TPB Factor Distribution', xaxis_title='TPB Factor', yaxis_title='Percentage')
# Calculate sentiment distribution within each TPB factor
tpb_sentiment_df = filtered_df.groupby(['tpb_label', 'label']).size().unstack(fill_value=0)
tpb_sentiment_df = tpb_sentiment_df.div(tpb_sentiment_df.sum(axis=1), axis=0) * 100
# Define colors for each sentiment
color_map = {
'negative': 'red',
'neutral': 'gray',
'positive': 'blue'
}
tpb_sentiment_fig = go.Figure()
for sentiment in tpb_sentiment_df.columns:
tpb_sentiment_fig.add_trace(go.Bar(
name=sentiment,
x=tpb_sentiment_df.index,
y=tpb_sentiment_df[sentiment],
text=[f'{val:.1f}%' for val in tpb_sentiment_df[sentiment]],
textposition='auto',
marker_color=color_map.get(sentiment, 'gray')
))
tpb_sentiment_fig.update_layout(
barmode='stack',
title='Sentiment Distribution within TPB Factors',
xaxis_title='TPB Factor',
yaxis_title='Percentage'
)
report = generate_report(tpb_sentiment_df.reset_index())
wordclouds = {}
bigrams_data = {}
for label in filtered_df['tpb_label'].unique():
text = ' '.join(filtered_df[filtered_df['tpb_label'] == label]['text']).replace('QUOTE','').replace('quote','').replace('sijil halal','').replace('halal','')
wordclouds[label] = generate_wordcloud(text)
bigrams_data[label] = generate_bigrams(text)
# Extract only the words
words_only = {
key: [word_pair for word_pair, _ in value]
for key, value in bigrams_data.items()
}
# Create a single DataFrame for bigrams, with only the bigram text (no frequency)
bigram_df = pd.DataFrame({
label: data for label, data in words_only.items()
})
print(bigrams_data.items())
bigram_df.index = [f"Top {i+1}" for i in range(len(bigram_df))]
return (sentiment_fig, tpb_fig, tpb_sentiment_fig, filtered_df[filtered_df['text'].str.len() < 300].head(5),
report, wordclouds.get('attitude'), wordclouds.get('religious knowledge'),
wordclouds.get('subjective norms'), wordclouds.get('perceived behavioural control'),bigram_df)
def text_classification_and_sentiment(text, keywords_df):
result_tpb = pipeline_tpb(text)
tpb_label = result_tpb[0]['label']
tpb_score = result_tpb[0]['score']
result_sentiment = sentiment_pipeline(text)
sentiment_label = result_sentiment[0]['label']
sentiment_score = result_sentiment[0]['score']
keywords_df = pd.read_excel('IMG_8137.xlsx')
# Check for keywords in the first column of the DataFrame
keywords = keywords_df.iloc[:, 0].tolist()
for keyword in keywords:
if keyword.lower() in text.lower():
sentiment_label = 'negative'
sentiment_score = 1.0
decision = predict_decision(sentiment_label)
tpb_output = f"TPB Label: {tpb_label}"
sentiment_output = f"Sentiment: {sentiment_label}\nProbability: {sentiment_score * 100:.2f}%"
decision_output = f"Decision: {decision}"
return tpb_output, sentiment_output, decision_output
examples = [
"Alhamdulillah, hari ni dapat makan dekat restoran halal baru. Rasa puas hati dan tenang bila tau makanan yang kita makan dijamin halal.",
"Semua orang cakap kena check logo halal sebelum beli makanan. Dah jadi macam second nature dah sekarang. Korang pun sama kan?"
]
css = """
:root {
--bg: #FFFFFF; /* Set the background color to white */
--col: #191919; /* Define primary text color */
--bg-dark: #000000; /* Define dark background color if needed */
--col-dark: #ECF2F7; /* Define dark text color if needed */
----body-background-fill: #FFFFFF;
}
html, body {
background-color: var(--bg); /* Set the background color to white for the entire page */
margin: 0; /* Remove default body margin */
padding: 0; /* Remove default body padding */
}
.container {
max-width: 1000px;
margin: auto;
padding: 20px;
}
.title {
text-align: center;
margin-bottom: 20px;
}
.nav-buttons {
display: flex;
justify-content: center;
gap: 10px;
margin-bottom: 20px;
}
#recommendation_report {
background-color: #f9f9f9; /* Keep this background light for the report section */
padding: 20px;
border: 2px solid #e0e0e0;
border-radius: 10px;
margin-top: 20px;
font-family: Arial, sans-serif;
font-size: 14px;
}
.wrap-text {
white-space: normal !important;
word-wrap: break-word;
}
.footer {visibility: hidden}
"""
with gr.Blocks(css=css + """
body, .gradio-container, .root, .wrap, #root .background .container {
background-color: white !important;
background-image: none !important;
background-fill: white !important;
}
""", theme='aisyahhrazak/miku-aisyah@=1.2.2') as demo:
with gr.Tabs() as tabs:
with gr.TabItem("User View", id=0):
gr.Markdown("## Text Classification and Sentiment Analysis Based on User Input About Halal Food Acquisition")
gr.Markdown("Enter a text to see TPB classification, sentiment analysis, and purchase prediction results!")
input_text = gr.Textbox(lines=2, label="Input Comment", placeholder="Model can make mistakes, we are striving to improve the model.")
with gr.Row():
tpb_output = gr.Textbox(lines=3, label="TPB Classification")
sentiment_output = gr.Textbox(lines=3, label="Sentiment Analysis")
decision_output = gr.Textbox(lines=3, label="Purchase Prediction")
# This needs to be called at some point prior to the first call to callback.flag()
hf_writer.setup([input_text,tpb_output, sentiment_output], "flagged_data_points")
classify_button = gr.Button("Analyze")
classify_button.click(lambda *args: hf_writer.flag(list(args)),fn=text_classification_and_sentiment, inputs=input_text, outputs=[tpb_output, sentiment_output, decision_output])
gr.Examples(examples=examples, inputs=input_text)
with gr.TabItem("Company View", id=1):
gr.Markdown("# Sentiment Analysis and Purchase Decision Factor for Halal Food Acquisition")
input_text = gr.Textbox(lines=1, label="Search Keyword", placeholder="Enter keyword")
search_button = gr.Button("Search")
with gr.Row():
sentiment_chart = gr.Plot(label="Sentiment Distribution")
tpb_chart = gr.Plot(label="TPB Factor Distribution")
tpb_sentiment_chart = gr.Plot(label="Sentiment Distribution within TPB Factors")
# Update word cloud outputs to be in a single row
gr.Markdown("### Word Clouds by TPB Label")
with gr.Row():
attitude_wc = gr.Image(label="Attitude Word Cloud", height=200, width=300)
religious_knowledge_wc = gr.Image(label="Religious Knowledge Word Cloud", height=200, width=300)
subjective_norms_wc = gr.Image(label="Subjective Norms Word Cloud",height=200, width=300)
perceived_behavioural_control_wc = gr.Image(label="Perceived Behavioural Control Word Cloud", height=200, width=300)
with gr.Accordion("See Recommendation Details"):
report_output = gr.Markdown(label="Recommendation Report", elem_id="recommendation_report")
gr.Markdown("### Top Bigrams by TPB Label")
bigram_table = gr.Dataframe(label="Top Bigrams for Each TPB Label")
output_table = gr.Dataframe(
headers=["text", "tpb_label", "sentiment", "score"],
label="Company Analysis Results",
wrap=True
)
search_button.click(
fn=search_company,
inputs=input_text,
outputs=[
sentiment_chart, tpb_chart, tpb_sentiment_chart, output_table, report_output,
attitude_wc, religious_knowledge_wc, subjective_norms_wc, perceived_behavioural_control_wc,bigram_table
]
)
demo.launch() |