HaloMaster's picture
add fengshen
50f0fbb
from typing import Optional
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
from fengshen.data.mmap_index_dataset import MMapIndexDataset
class MMapDataModule(LightningDataModule):
@ staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('MMAP DataModule')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--train_batchsize', default=32, type=int)
parser.add_argument('--eval_batchsize', default=32, type=int)
parser.add_argument('--test_batchsize', default=32, type=int)
parser.add_argument('--train_datas', default=[
'./train_datas'
], type=str, nargs='+')
parser.add_argument('--valid_datas', default=[
'./valid_datas'
], type=str, nargs='+')
parser.add_argument('--test_datas', default=[
'./test_datas'],
type=str, nargs='+')
parser.add_argument('--input_tensor_name', default=['input_ids'], type=str, nargs='+')
return parent_args
def __init__(
self,
collate_fn,
args,
**kwargs,
):
super().__init__()
self.collate_fn = collate_fn
self.train_dataset = MMapIndexDataset(args.train_datas, args.input_tensor_name)
self.valid_dataset = MMapIndexDataset(args.valid_datas, args.input_tensor_name)
self.test_dataset = MMapIndexDataset(args.test_datas, args.input_tensor_name)
self.save_hyperparameters(args)
def setup(self, stage: Optional[str] = None) -> None:
return super().setup(stage)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.hparams.train_batchsize,
shuffle=True,
num_workers=self.hparams.num_workers,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.valid_dataset,
batch_size=self.hparams.eval_batchsize,
shuffle=True,
num_workers=self.hparams.num_workers,
collate_fn=self.collate_fn,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.hparams.test_batchsize,
shuffle=True,
num_workers=self.hparams.num_workers,
collate_fn=self.collate_fn,
)