Spaces:
Running
Running
File size: 9,142 Bytes
bcec73a e418082 bcec73a e418082 bcec73a e418082 bcec73a c45e94d bcec73a 3b98f27 bcec73a e418082 bcec73a e418082 9f99eb8 e418082 3b98f27 e418082 9f99eb8 e418082 bcec73a e418082 3b98f27 e418082 3b98f27 e418082 bcec73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
## Restormer: Efficient Transformer for High-Resolution Image Restoration
## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang
## https://arxiv.org/abs/2111.09881
import torch
import torch.nn.functional as F
from skimage import img_as_ubyte
import argparse
import imageio
from skimage.transform import resize
from scipy.spatial import ConvexHull
from tqdm import tqdm
import numpy as np
import modules.generator as G
import modules.keypoint_detector as KPD
import yaml
from collections import OrderedDict
import depth
parser = argparse.ArgumentParser(description='Test DaGAN on your own images')
parser.add_argument('--source_image', default='./temp/source.jpg', type=str, help='Directory of input source image')
parser.add_argument('--driving_video', default='./temp/driving.mp4', type=str, help='Directory for driving video')
parser.add_argument('--output', default='./temp/result.mp4', type=str, help='Directory for driving video')
args = parser.parse_args()
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False, use_relative_jacobian=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_value_diff *= adapt_movement_scale
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def find_best_frame(source, driving, cpu=False):
import face_alignment
def normalize_kp(kp):
kp = kp - kp.mean(axis=0, keepdims=True)
area = ConvexHull(kp[:, :2]).volume
area = np.sqrt(area)
kp[:, :2] = kp[:, :2] / area
return kp
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
device='cpu' if cpu else 'cuda')
kp_source = fa.get_landmarks(255 * source)[0]
kp_source = normalize_kp(kp_source)
norm = float('inf')
frame_num = 0
for i, image in tqdm(enumerate(driving)):
kp_driving = fa.get_landmarks(255 * image)[0]
kp_driving = normalize_kp(kp_driving)
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
if new_norm < norm:
norm = new_norm
frame_num = i
return frame_num
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False):
sources = []
drivings = []
with torch.no_grad():
predictions = []
depth_gray = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
if not cpu:
source = source.cuda()
driving = driving.cuda()
outputs = depth_decoder(depth_encoder(source))
depth_source = outputs[("disp", 0)]
outputs = depth_decoder(depth_encoder(driving[:, :, 0]))
depth_driving = outputs[("disp", 0)]
source_kp = torch.cat((source,depth_source),1)
driving_kp = torch.cat((driving[:, :, 0],depth_driving),1)
kp_source = kp_detector(source_kp)
kp_driving_initial = kp_detector(driving_kp)
# kp_source = kp_detector(source)
# kp_driving_initial = kp_detector(driving[:, :, 0])
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx]
if not cpu:
driving_frame = driving_frame.cuda()
outputs = depth_decoder(depth_encoder(driving_frame))
depth_map = outputs[("disp", 0)]
gray_driving = np.transpose(depth_map.data.cpu().numpy(), [0, 2, 3, 1])[0]
gray_driving = 1-gray_driving/np.max(gray_driving)
frame = torch.cat((driving_frame,depth_map),1)
kp_driving = kp_detector(frame)
kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
out = generator(source, kp_source=kp_source, kp_driving=kp_norm,source_depth = depth_source, driving_depth = depth_map)
drivings.append(np.transpose(driving_frame.data.cpu().numpy(), [0, 2, 3, 1])[0])
sources.append(np.transpose(source.data.cpu().numpy(), [0, 2, 3, 1])[0])
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
depth_gray.append(gray_driving)
return sources, drivings, predictions,depth_gray
with open("config/vox-adv-256.yaml") as f:
config = yaml.load(f)
generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params'])
config['model_params']['common_params']['num_channels'] = 4
kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cpu = False if torch.cuda.is_available() else True
g_checkpoint = torch.load("generator.pt", map_location=device)
kp_checkpoint = torch.load("kp_detector.pt", map_location=device)
ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items())
generator.load_state_dict(ckp_generator)
ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items())
kp_detector.load_state_dict(ckp_kp_detector)
depth_encoder = depth.ResnetEncoder(18, False)
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4))
loaded_dict_enc = torch.load('encoder.pth',map_location=device)
loaded_dict_dec = torch.load('depth.pth',map_location=device)
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
depth_encoder.load_state_dict(filtered_dict_enc)
ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()}
depth_decoder.load_state_dict(ckp_depth_decoder)
depth_encoder.eval()
depth_decoder.eval()
# device = torch.device('cpu')
# stx()
generator = generator.to(device)
kp_detector = kp_detector.to(device)
depth_encoder = depth_encoder.to(device)
depth_decoder = depth_decoder.to(device)
generator.eval()
kp_detector.eval()
depth_encoder.eval()
depth_decoder.eval()
img_multiple_of = 8
with torch.inference_mode():
if torch.cuda.is_available():
torch.cuda.ipc_collect()
torch.cuda.empty_cache()
source_image = imageio.imread(args.source_image)
reader = imageio.get_reader(args.driving_video)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
i = find_best_frame(source_image, driving_video,cpu)
print ("Best frame: " + str(i))
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=cpu)
sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=cpu)
predictions = predictions_backward[::-1] + predictions_forward[1:]
sources = sources_backward[::-1] + sources_forward[1:]
drivings = drivings_backward[::-1] + drivings_forward[1:]
depth_gray = depth_backward[::-1] + depth_forward[1:]
imageio.mimsave(args.output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps)
imageio.mimsave("gray.mp4", depth_gray, fps=fps)
# merge the gray video
animation = np.array(imageio.mimread(args.output,memtest=False))
gray = np.array(imageio.mimread("gray.mp4",memtest=False))
src_dst = animation[:,:,:512,:]
animate = animation[:,:,512:,:]
merge = np.concatenate((src_dst,gray,animate),2)
imageio.mimsave(args.output, merge, fps=fps)
# print(f"\nRestored images are saved at {out_dir}") |