Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Image Captioning from:
|
2 |
+
# https://learn.deeplearning.ai/courses/open-source-models-hugging-face/lesson/12/image-captioning
|
3 |
+
#
|
4 |
+
|
5 |
+
from transformers import BlipForConditionalGeneration
|
6 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
7 |
+
|
8 |
+
from transformers import AutoProcessor
|
9 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
def captioning(input):
|
15 |
+
image_tensors = processor(input, return_tensors="pt")
|
16 |
+
image_text_tensors = model.generate(**image_tensors)
|
17 |
+
output = processor.decode(image_text_tensors[0], skip_special_tokens=True)
|
18 |
+
return output
|
19 |
+
|
20 |
+
gr.close_all()
|
21 |
+
|
22 |
+
app = gr.Interface(fn=captioning,
|
23 |
+
inputs=[gr.Image(label="Laita tähä joku kuva", type="pil")],
|
24 |
+
outputs=[gr.Textbox(label="Mitä näkyy?")],
|
25 |
+
title="Harzan kuvan selitys aplikaatio",
|
26 |
+
description="Harzan ihme aplikaatio kertomaan mitä kuvassa on",
|
27 |
+
allow_flagging="never")
|
28 |
+
app.launch()
|
29 |
+
gr.close_all()
|