Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import torch | |
import librosa | |
import numpy as np | |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
model_name = "Hemg/human-emotion-detection" | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name).to(device) | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name).to(device) | |
def preprocess_audio(example): | |
audio_array, sampling_rate = librosa.load(audio_file_path, sr=16000) # Load and resample to 16kHz | |
return {'speech': audio_array, 'sampling_rate': sampling_rate} | |
def inference(audio): | |
example = preprocess_audio(audio_file_path) | |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) # Move inputs to GPU | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids # Move tensors back to CPU for further processing | |
iface = gr.Interface(fn=predict_sentiment, | |
inputs=gr.inputs.Audio(source="microphone", type="filepath"), | |
outputs="text", | |
title="Audio Sentiment Analysis", | |
description="Upload an audio file or record one to analyze sentiment.") | |
iface.launch() |