Hawoly18 commited on
Commit
493c487
1 Parent(s): 99640fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -34
app.py CHANGED
@@ -1,40 +1,55 @@
1
- import torch
2
  import gradio as gr
3
- from transformers import (
4
- AutomaticSpeechRecognitionPipeline,
5
- WhisperForConditionalGeneration,
6
- WhisperTokenizer,
7
- WhisperProcessor,
8
- )
9
- from peft import PeftModel, PeftConfig
10
 
11
- peft_model_id = "Moustapha91/whisper-small-wolof"
12
- language = "French"
13
- task = "transcribe"
14
 
15
- peft_config = PeftConfig.from_pretrained(peft_model_id)
16
- model = WhisperForConditionalGeneration.from_pretrained(
17
- peft_config.base_model_name_or_path,
18
- device_map="auto" # On supprime la quantization en 8 bits
19
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- model = PeftModel.from_pretrained(model, peft_model_id)
22
- tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
23
- processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
24
- feature_extractor = processor.feature_extractor
25
- forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
26
- pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
27
-
28
- def transcribe(audio):
29
- text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
30
- return text
31
-
32
- iface = gr.Interface(
33
- fn=transcribe,
34
- inputs=gr.Audio(type="filepath"), # On supprime 'source' pour éviter l'erreur
35
- outputs="text",
36
- title="PEFT LoRA + Whisper Small Wolof",
37
- description="Realtime demo for Wolof speech recognition using `PEFT-LoRA` fine-tuned Whisper Small model.",
38
  )
39
 
40
- iface.launch(share=True)
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from typing import List, Tuple
4
+ import torch
 
 
 
 
5
 
 
 
 
6
 
7
+ model_name = "Hawoly18/Adia_Llama3.1"
8
+
9
+ # Vérifier si un GPU est disponible
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ model = AutoModelForCausalLM.from_pretrained(model_name)
15
+
16
+ def respond(
17
+ message: str,
18
+ history: List[Tuple[str, str]],
19
+ system_message: str,
20
+ max_tokens: int,
21
+ temperature: float,
22
+ top_p: float,
23
+ ) -> str:
24
+
25
+ prompt = system_message
26
+ for user_msg, assistant_msg in history:
27
+ prompt += f"\nUser: {user_msg}\nAssistant: {assistant_msg}"
28
+ prompt += f"\nUser: {message}\nAssistant:"
29
+
30
+
31
+ inputs = tokenizer(prompt, return_tensors="pt")
32
+ outputs = model.generate(
33
+ **inputs,
34
+ max_length=max_tokens,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ do_sample=True,
38
+ )
39
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Assistant:")[-1].strip()
40
+ return response
41
+
42
 
43
+ demo = gr.ChatInterface(
44
+ respond,
45
+ additional_inputs=[
46
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
47
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Fixed syntax error
49
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
50
+ ],
51
+ title="Chatbot Interface"
 
 
 
 
 
 
 
 
52
  )
53
 
54
+ if __name__ == "__main__":
55
+ demo.launch()