eef / app.py
Heekyung's picture
Rename gradio_app.py to app.py
cf2e463
raw
history blame
11.6 kB
import os
import gradio as gr
import torch
import numpy as np
import imageio
from PIL import Image
import uuid
from draggan import utils
from draggan.draggan import drag_gan
from draggan import draggan as draggan
device = 'cuda'
SIZE_TO_CLICK_SIZE = {
1024: 8,
512: 5,
256: 2
}
CKPT_SIZE = {
'stylegan2/stylegan2-ffhq-config-f.pkl': 1024,
'stylegan2/stylegan2-cat-config-f.pkl': 256,
'stylegan2/stylegan2-church-config-f.pkl': 256,
'stylegan2/stylegan2-horse-config-f.pkl': 256,
'ada/ffhq.pkl': 1024,
'ada/afhqcat.pkl': 512,
'ada/afhqdog.pkl': 512,
'ada/afhqwild.pkl': 512,
'ada/brecahad.pkl': 512,
'ada/metfaces.pkl': 512,
'human/stylegan_human_v2_512.pkl': 512,
'human/stylegan_human_v2_1024.pkl': 1024,
'self_distill/bicycles_256_pytorch.pkl': 256,
'self_distill/dogs_1024_pytorch.pkl': 1024,
'self_distill/elephants_512_pytorch.pkl': 512,
'self_distill/giraffes_512_pytorch.pkl': 512,
'self_distill/horses_256_pytorch.pkl': 256,
'self_distill/lions_512_pytorch.pkl': 512,
'self_distill/parrots_512_pytorch.pkl': 512,
}
DEFAULT_CKPT = 'ada/afhqcat.pkl'
def to_image(tensor):
tensor = tensor.squeeze(0).permute(1, 2, 0)
arr = tensor.detach().cpu().numpy()
arr = (arr - arr.min()) / (arr.max() - arr.min())
arr = arr * 255
return arr.astype('uint8')
def add_points_to_image(image, points, size=5):
image = utils.draw_handle_target_points(image, points['handle'], points['target'], size)
return image
def on_click(image, target_point, points, size, evt: gr.SelectData):
if target_point:
points['target'].append([evt.index[1], evt.index[0]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return image, not target_point
points['handle'].append([evt.index[1], evt.index[0]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return image, not target_point
def on_drag(model, points, max_iters, state, size, mask, lr_box):
if len(points['handle']) == 0:
raise gr.Error('You must select at least one handle point and target point.')
if len(points['handle']) != len(points['target']):
raise gr.Error('You have uncompleted handle points, try to selct a target point or undo the handle point.')
max_iters = int(max_iters)
W = state['W']
handle_points = [torch.tensor(p, device=device).float() for p in points['handle']]
target_points = [torch.tensor(p, device=device).float() for p in points['target']]
if mask.get('mask') is not None:
mask = Image.fromarray(mask['mask']).convert('L')
mask = np.array(mask) == 255
mask = torch.from_numpy(mask).float().to(device)
mask = mask.unsqueeze(0).unsqueeze(0)
else:
mask = None
step = 0
for image, W, handle_points in drag_gan(W, model['G'],
handle_points, target_points, mask,
max_iters=max_iters, lr=lr_box):
points['handle'] = [p.cpu().numpy().astype('int') for p in handle_points]
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
state['history'].append(image)
step += 1
yield image, state, step
def on_reset(points, image, state):
return {'target': [], 'handle': []}, state['img'], False
def on_undo(points, image, state, size):
image = state['img']
if len(points['target']) < len(points['handle']):
points['handle'] = points['handle'][:-1]
else:
points['handle'] = points['handle'][:-1]
points['target'] = points['target'][:-1]
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return points, image, False
def on_change_model(selected, model):
size = CKPT_SIZE[selected]
G = draggan.load_model(utils.get_path(selected), device=device)
model = {'G': G}
W = draggan.generate_W(
G,
seed=int(1),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, _ = draggan.generate_image(W, G, device=device)
state = {
'W': W,
'img': img,
'history': []
}
return model, state, img, img, size
def on_new_image(model, seed):
G = model['G']
W = draggan.generate_W(
G,
seed=int(seed),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, _ = draggan.generate_image(W, G, device=device)
state = {
'W': W,
'img': img,
'history': []
}
points = {'target': [], 'handle': []}
target_point = False
return img, img, state, points, target_point
def on_max_iter_change(max_iters):
return gr.update(maximum=max_iters)
def on_save_files(image, state):
os.makedirs('draggan_tmp', exist_ok=True)
image_name = f'draggan_tmp/image_{uuid.uuid4()}.png'
video_name = f'draggan_tmp/video_{uuid.uuid4()}.mp4'
imageio.imsave(image_name, image)
imageio.mimsave(video_name, state['history'])
return [image_name, video_name]
def on_show_save():
return gr.update(visible=True)
def on_image_change(model, image_size, image):
image = Image.fromarray(image)
result = inverse_image(
model.g_ema,
image,
image_size=image_size
)
result['history'] = []
image = to_image(result['sample'])
points = {'target': [], 'handle': []}
target_point = False
return image, image, result, points, target_point
def on_mask_change(mask):
return mask['image']
def on_select_mask_tab(state):
img = to_image(state['sample'])
return img
def main():
torch.cuda.manual_seed(25)
with gr.Blocks() as demo:
gr.Markdown(
"""
# DragGAN
Unofficial implementation of [Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold](https://vcai.mpi-inf.mpg.de/projects/DragGAN/)
[Our Implementation](https://github.com/Zeqiang-Lai/DragGAN) | [Official Implementation](https://github.com/XingangPan/DragGAN) (Not released yet)
## Tutorial
1. (Optional) Draw a mask indicate the movable region.
2. Setup a least one pair of handle point and target point.
3. Click "Drag it".
## Hints
- Handle points (Blue): the point you want to drag.
- Target points (Red): the destination you want to drag towards to.
## Primary Support of Custom Image.
- We now support dragging user uploaded image by GAN inversion.
- **Please upload your image at `Setup Handle Points` pannel.** Upload it from `Draw a Mask` would cause errors for now.
- Due to the limitation of GAN inversion,
- You might wait roughly 1 minute to see the GAN version of the uploaded image.
- The shown image might be slightly difference from the uploaded one.
- It could also fail to invert the uploaded image and generate very poor results.
- Idealy, you should choose the closest model of the uploaded image. For example, choose `stylegan2-ffhq-config-f.pkl` for human face. `stylegan2-cat-config-f.pkl` for cat.
> Please fire an issue if you have encounted any problem. Also don't forgot to give a star to the [Official Repo](https://github.com/XingangPan/DragGAN), [our project](https://github.com/Zeqiang-Lai/DragGAN) could not exist without it.
""",
)
G = draggan.load_model(utils.get_path(DEFAULT_CKPT), device=device)
model = gr.State({'G': G})
W = draggan.generate_W(
G,
seed=int(1),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, F0 = draggan.generate_image(W, G, device=device)
state = gr.State({
'W': W,
'img': img,
'history': []
})
points = gr.State({'target': [], 'handle': []})
size = gr.State(CKPT_SIZE[DEFAULT_CKPT])
target_point = gr.State(False)
with gr.Row():
with gr.Column(scale=0.3):
with gr.Accordion("Model"):
model_dropdown = gr.Dropdown(choices=list(CKPT_SIZE.keys()), value=DEFAULT_CKPT,
label='StyleGAN2 model')
seed = gr.Number(value=1, label='Seed', precision=0)
new_btn = gr.Button('New Image')
with gr.Accordion('Drag'):
with gr.Row():
lr_box = gr.Number(value=2e-3, label='Learning Rate')
max_iters = gr.Slider(1, 500, 20, step=1, label='Max Iterations')
with gr.Row():
with gr.Column(min_width=100):
reset_btn = gr.Button('Reset All')
with gr.Column(min_width=100):
undo_btn = gr.Button('Undo Last')
with gr.Row():
btn = gr.Button('Drag it', variant='primary')
with gr.Accordion('Save', visible=False) as save_panel:
files = gr.Files(value=[])
progress = gr.Slider(value=0, maximum=20, label='Progress', interactive=False)
with gr.Column():
with gr.Tabs():
with gr.Tab('Setup Handle Points', id='input'):
image = gr.Image(img).style(height=512, width=512)
with gr.Tab('Draw a Mask', id='mask') as masktab:
mask = gr.ImageMask(img, label='Mask').style(height=512, width=512)
image.select(on_click, [image, target_point, points, size], [image, target_point])
image.upload(on_image_change, [model, size, image], [image, mask, state, points, target_point])
mask.upload(on_mask_change, [mask], [image])
btn.click(on_drag, inputs=[model, points, max_iters, state, size, mask, lr_box], outputs=[image, state, progress]).then(
on_show_save, outputs=save_panel).then(
on_save_files, inputs=[image, state], outputs=[files]
)
reset_btn.click(on_reset, inputs=[points, image, state], outputs=[points, image, target_point])
undo_btn.click(on_undo, inputs=[points, image, state, size], outputs=[points, image, target_point])
model_dropdown.change(on_change_model, inputs=[model_dropdown, model], outputs=[model, state, image, mask, size])
new_btn.click(on_new_image, inputs=[model, seed], outputs=[image, mask, state, points, target_point])
max_iters.change(on_max_iter_change, inputs=max_iters, outputs=progress)
masktab.select(lambda: gr.update(value=None), outputs=[mask]).then(on_select_mask_tab, inputs=[state], outputs=[mask])
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='cuda')
parser.add_argument('--share', action='store_true')
parser.add_argument('-p', '--port', type=int, default=None)
parser.add_argument('--ip', default=None)
args = parser.parse_args()
device = args.device
demo = main()
print('Successfully loaded, starting gradio demo')
demo.queue(concurrency_count=1, max_size=20).launch(share=args.share, server_name=args.ip, server_port=args.port)