File size: 5,980 Bytes
2786a41
 
 
 
 
 
 
 
 
 
72eed8d
 
c58c4f8
2786a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c96486
e222643
e490033
2786a41
e222643
2786a41
c58c4f8
2786a41
c58c4f8
2786a41
 
 
 
 
 
 
 
 
 
72eed8d
94c9ba6
 
 
 
 
910f25b
 
 
 
e1d53b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c9ba6
2786a41
72eed8d
e222643
72eed8d
 
 
 
94c9ba6
5533ca9
 
 
72eed8d
 
 
5533ca9
 
7557f61
 
e490033
7557f61
 
 
3e8991a
72eed8d
4374e49
7557f61
4374e49
7557f61
 
 
 
72eed8d
 
2786a41
72eed8d
 
2786a41
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

batch_size = 1
batch_count = 1

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sdxl/generate", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sdxl/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sdxl/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed

        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string


def flip_text(prompt, negative_prompt, steps, cfg_scale, width, height, seed):
    # Modify the prompt
    modified_prompt = f"Make a Disney Pixar poster style image {prompt} 8K"
    result = prodia_client.generate({
        "prompt": modified_prompt,
        "negative_prompt": negative_prompt,
        "model": "sd_xl_base_1.0.safetensors [be9edd61]",
        "steps": steps,
        "sampler": "DPM++ 2M Karras",
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]


css = """
        #prompt-container .form{
        border-top-right-radius: 0;
        border-bottom-right-radius: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
        .tabitem{border: 0 !important}.style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True
        #gen-button{
        border-top-left-radius:0;
        border-bottom-left-radius:0;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
"""

# Load the default image
default_image_path = "image(6).png"
default_image = Image.open(default_image_path)

prodia_client = Prodia(api_key=os.getenv("API_KEY"))

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div style="text-align: center; margin: 0 auto;">
              <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px">
                Disney AI Pixar Poster Generator
              </h1>
            </div>
        """)
    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", placeholder="Make a disney Poster Style cute Cat 8k", show_label=True, lines=1, elem_id="prompt-text-input")
        with gr.Column(scale=1):
            text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
    with gr.Row():
        with gr.Column(scale=1):
            image_output = gr.Image(value=default_image, elem_id="gallery")  # Set the default image here
    with gr.Row():
        with gr.Accordion("Additional inputs", open=False):
            with gr.Column(scale=1):
                width = gr.Slider(label="↔️ Width", minimum=512, maximum=1024, value=1024, step=8)
                height = gr.Slider(label="↕️ Height", minimum=512, maximum=1024, value=1024, step=8)
                negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, black and white, (deformed head, eyes, ears, mouth)", placeholder="What you don't want to see in the image", show_label=True, lines=1, elem_id="negative-prompt-text-input")
                steps = gr.Slider(label="Sampling Steps (higher value means more details)", minimum=1, maximum=30, value=25, step=1)
                cfg_scale = gr.Slider(label="CFG Scale (higher value means more creative freedom)", minimum=1, maximum=20, value=7, step=1)
                seed = gr.Number(label="Seed", value=-1)

    text_button.click(lambda: gr.update(label="Your Image will be ready in few seconds"), outputs=text_button)
    text_button.click(flip_text, inputs=[prompt, negative_prompt, steps, cfg_scale, width, height, seed], outputs=image_output)

demo.queue(concurrency_count=16, max_size=20, api_open=False).launch(max_threads=64)