EkhiAzur's picture
Update app.py
a90421b
raw
history blame
1.36 kB
import gradio as gr
from transformers import AutoModel, pipeline, AutoTokenizer, AutoModelForSequenceClassification
access_token = "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"
model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/RoBERTA_3", token=access_token)
tokenizer = AutoTokenizer.from_pretrained(
"EkhiAzur/RoBERTA_3",
token = access_token,
use_fast=True,
add_prefix_space=True,
)
classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, max_length=512,
padding=True, truncation=True, batch_size=1)
def prozesatu(Testua, request: gr.Request):
return str(request.headers["accept-language"])
prediction = prozesatu.classifier(Testua)[0]
if prediction["label"]=="GAI":
return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]}
else:
return {"Gai":1-prediction["score"], "Ez gai": prediction["score"]}
#return 'C1:{}. Probabilitatea:{:.2f}'.format(prediction["label"], round(prediction["score"], 2))
prozesatu.classifier = classifier
demo = gr.Interface(
fn=prozesatu,
inputs=gr.Textbox(label="Testua", placeholder="Idatzi hemen testua..."),
outputs="label",
#interpretation="default",
#examples=[["Gaur egungo teknologiak bikainak dira..."]]
).launch()
#gr.Interface(fn=prozesatu, inputs="text", outputs="text").launch()