EkhiAzur commited on
Commit
a0ff5e6
1 Parent(s): fa6f93a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -2
app.py CHANGED
@@ -4,9 +4,17 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
4
  import json
5
  import socket
6
  from datetime import datetime
 
 
 
7
 
8
  access_token = os.environ['ACCES_TOKEN']
9
 
 
 
 
 
 
10
  model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/C1_Sailkapen_Demoa", token=access_token)
11
 
12
  tokenizer = AutoTokenizer.from_pretrained(
@@ -22,7 +30,11 @@ classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, m
22
  adibideak = json.load(open("./Adibideak.json", "r"))
23
 
24
  def prozesatu(Testua, request: gr.Request):
25
- open("Proba.txt", "w")
 
 
 
 
26
  #Ip-a lortzeko kontuak
27
  client_ip = request.client.host
28
  local_ip = socket.gethostbyname(socket.gethostbyname(""))
@@ -35,12 +47,14 @@ def prozesatu(Testua, request: gr.Request):
35
  now = datetime.now()
36
 
37
  #Fitxategian gorde
38
- f = open("Erabiltzaileak.txt", "a")
39
  print(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n')
40
  f.write(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n')
41
 
42
  f.close()
43
 
 
 
44
  prediction = prozesatu.classifier(Testua)[0]
45
  if prediction["label"]=="GAI":
46
  return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]}
 
4
  import json
5
  import socket
6
  from datetime import datetime
7
+ import huggingface_hub
8
+ from huggingface_hub import Repository
9
+ import os
10
 
11
  access_token = os.environ['ACCES_TOKEN']
12
 
13
+ DATASET_REPO_URL = "EkhiAzur/Demoko_informazioa"
14
+ DATA_FILENAME = "Erabiltzaileak.txt"
15
+ DATA_FILE = os.path.join("data", DATA_FILENAME)
16
+
17
+
18
  model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/C1_Sailkapen_Demoa", token=access_token)
19
 
20
  tokenizer = AutoTokenizer.from_pretrained(
 
30
  adibideak = json.load(open("./Adibideak.json", "r"))
31
 
32
  def prozesatu(Testua, request: gr.Request):
33
+
34
+ repo = Repository(
35
+ local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=access_token
36
+ )
37
+
38
  #Ip-a lortzeko kontuak
39
  client_ip = request.client.host
40
  local_ip = socket.gethostbyname(socket.gethostbyname(""))
 
47
  now = datetime.now()
48
 
49
  #Fitxategian gorde
50
+ f = open(DATA_FILE, "a")
51
  print(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n')
52
  f.write(f'Erabiltzailea: {client_ip}. Eguna eta ordua: {now}.\n')
53
 
54
  f.close()
55
 
56
+ commit_url = repo.push_to_hub()
57
+
58
  prediction = prozesatu.classifier(Testua)[0]
59
  if prediction["label"]=="GAI":
60
  return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]}