File size: 7,171 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
EDSR common.py
Since a lot of models are developed on top of EDSR, here we include some common functions from EDSR.
In this repository, the common functions is used by edsr_esa.py and ipt.py
"""


import math

import torch
import torch.nn as nn
import torch.nn.functional as F


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias
    )


class MeanShift(nn.Conv2d):
    def __init__(
        self,
        rgb_range,
        rgb_mean=(0.4488, 0.4371, 0.4040),
        rgb_std=(1.0, 1.0, 1.0),
        sign=-1,
    ):

        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
        for p in self.parameters():
            p.requires_grad = False


class BasicBlock(nn.Sequential):
    def __init__(
        self,
        conv,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        bias=False,
        bn=True,
        act=nn.ReLU(True),
    ):

        m = [conv(in_channels, out_channels, kernel_size, bias=bias)]
        if bn:
            m.append(nn.BatchNorm2d(out_channels))
        if act is not None:
            m.append(act)

        super(BasicBlock, self).__init__(*m)


class ESA(nn.Module):
    def __init__(self, esa_channels, n_feats):
        super(ESA, self).__init__()
        f = esa_channels
        self.conv1 = nn.Conv2d(n_feats, f, kernel_size=1)
        self.conv_f = nn.Conv2d(f, f, kernel_size=1)
        #         self.conv_max = conv(f, f, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(f, f, kernel_size=3, stride=2, padding=0)
        self.conv3 = nn.Conv2d(f, f, kernel_size=3, padding=1)
        #         self.conv3_ = conv(f, f, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(f, n_feats, kernel_size=1)
        self.sigmoid = nn.Sigmoid()
        # self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        c1_ = self.conv1(x)
        c1 = self.conv2(c1_)
        v_max = F.max_pool2d(c1, kernel_size=7, stride=3)
        c3 = self.conv3(v_max)
        #         v_range = self.relu(self.conv_max(v_max))
        #         c3 = self.relu(self.conv3(v_range))
        #         c3 = self.conv3_(c3)
        c3 = F.interpolate(
            c3, (x.size(2), x.size(3)), mode="bilinear", align_corners=False
        )
        cf = self.conv_f(c1_)
        c4 = self.conv4(c3 + cf)
        m = self.sigmoid(c4)

        return x * m


# class ESA(nn.Module):
#     def __init__(self, esa_channels, n_feats, conv=nn.Conv2d):
#         super(ESA, self).__init__()
#         f = n_feats // 4
#         self.conv1 = conv(n_feats, f, kernel_size=1)
#         self.conv_f = conv(f, f, kernel_size=1)
#         self.conv_max = conv(f, f, kernel_size=3, padding=1)
#         self.conv2 = conv(f, f, kernel_size=3, stride=2, padding=0)
#         self.conv3 = conv(f, f, kernel_size=3, padding=1)
#         self.conv3_ = conv(f, f, kernel_size=3, padding=1)
#         self.conv4 = conv(f, n_feats, kernel_size=1)
#         self.sigmoid = nn.Sigmoid()
#         self.relu = nn.ReLU(inplace=True)
#
#     def forward(self, x):
#         c1_ = (self.conv1(x))
#         c1 = self.conv2(c1_)
#         v_max = F.max_pool2d(c1, kernel_size=7, stride=3)
#         v_range = self.relu(self.conv_max(v_max))
#         c3 = self.relu(self.conv3(v_range))
#         c3 = self.conv3_(c3)
#         c3 = F.interpolate(c3, (x.size(2), x.size(3)), mode='bilinear', align_corners=False)
#         cf = self.conv_f(c1_)
#         c4 = self.conv4(c3 + cf)
#         m = self.sigmoid(c4)
#
#         return x * m


class ResBlock(nn.Module):
    def __init__(
        self,
        conv,
        n_feats,
        kernel_size,
        bias=True,
        bn=False,
        act=nn.ReLU(True),
        res_scale=1,
        esa_block=True,
        depth_wise_kernel=7,
    ):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if i == 0:
                m.append(act)

        self.body = nn.Sequential(*m)
        self.esa_block = esa_block
        if self.esa_block:
            esa_channels = 16
            self.c5 = nn.Conv2d(
                n_feats,
                n_feats,
                depth_wise_kernel,
                padding=depth_wise_kernel // 2,
                groups=n_feats,
                bias=True,
            )
            self.esa = ESA(esa_channels, n_feats)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x
        if self.esa_block:
            res = self.esa(self.c5(res))

        return res


class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:  # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feats, 4 * n_feats, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn:
                    m.append(nn.BatchNorm2d(n_feats))
                if act == "relu":
                    m.append(nn.ReLU(True))
                elif act == "prelu":
                    m.append(nn.PReLU(n_feats))

        elif scale == 3:
            m.append(conv(n_feats, 9 * n_feats, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if act == "relu":
                m.append(nn.ReLU(True))
            elif act == "prelu":
                m.append(nn.PReLU(n_feats))
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


class LiteUpsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feats, n_out=3, bn=False, act=False, bias=True):

        m = []
        m.append(conv(n_feats, n_out * (scale**2), 3, bias))
        m.append(nn.PixelShuffle(scale))
        # if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
        #     for _ in range(int(math.log(scale, 2))):
        #         m.append(conv(n_feats, 4 * n_out, 3, bias))
        #         m.append(nn.PixelShuffle(2))
        #         if bn:
        #             m.append(nn.BatchNorm2d(n_out))
        #         if act == 'relu':
        #             m.append(nn.ReLU(True))
        #         elif act == 'prelu':
        #             m.append(nn.PReLU(n_out))

        # elif scale == 3:
        #     m.append(conv(n_feats, 9 * n_out, 3, bias))
        #     m.append(nn.PixelShuffle(3))
        #     if bn:
        #         m.append(nn.BatchNorm2d(n_out))
        #     if act == 'relu':
        #         m.append(nn.ReLU(True))
        #     elif act == 'prelu':
        #         m.append(nn.PReLU(n_out))
        # else:
        #     raise NotImplementedError

        super(LiteUpsampler, self).__init__(*m)