Spaces:
Running
on
T4
Running
on
T4
import torch, sys, os, random | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
from multiprocessing import Process, Queue | |
from PIL import Image | |
from pillow_heif import register_heif_opener | |
import pillow_heif | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
# Import files from the local folder | |
from opt import opt | |
from degradation.ESR.utils import tensor2np, np2tensor | |
class HEIF(): | |
def __init__(self) -> None: | |
# Choose an image compression degradation | |
pass | |
def compress_and_store(self, np_frames, store_path): | |
''' Compress and Store the whole batch as HEIF (~ HEVC) | |
Args: | |
np_frames (numpy): The numpy format of the data (Shape:?) | |
store_path (str): The store path | |
Return: | |
None | |
''' | |
# Init call for heif | |
register_heif_opener() | |
single_frame = np_frames | |
# Prepare | |
essential_name = store_path.split('.')[0] | |
# Choose the quality | |
quality = random.randint(*opt['heif_quality_range1']) | |
method = random.randint(*opt['heif_encode_speed1']) | |
# Transform to PIL and then compress | |
PIL_image = Image.fromarray(np.uint8(single_frame[...,::-1])).convert('RGB') | |
PIL_image.save(essential_name+'.heic', quality=quality, method=method) | |
# Transform as png format | |
heif_file = pillow_heif.open_heif(essential_name+'.heic', convert_hdr_to_8bit=False, bgr_mode=True) | |
np_array = np.asarray(heif_file) | |
cv2.imwrite(store_path, np_array) | |
os.remove(essential_name+'.heic') | |
def compress_tensor(tensor_frames, idx=0): | |
''' Compress tensor input to HEIF and then return it | |
Args: | |
tensor_frame (tensor): Tensor inputs | |
Returns: | |
result (tensor): Tensor outputs (same shape as input) | |
''' | |
# Init call for heif | |
register_heif_opener() | |
# Prepare | |
single_frame = tensor2np(tensor_frames) | |
essential_name = "tmp/temp_"+str(idx) | |
# Choose the quality | |
quality = random.randint(*opt['heif_quality_range1']) | |
method = random.randint(*opt['heif_encode_speed1']) | |
# Transform to PIL and then compress | |
PIL_image = Image.fromarray(np.uint8(single_frame[...,::-1])).convert('RGB') | |
PIL_image.save(essential_name+'.heic', quality=quality, method=method) | |
# Transform as png format | |
heif_file = pillow_heif.open_heif(essential_name+'.heic', convert_hdr_to_8bit=False, bgr_mode=True) | |
decimg = np.asarray(heif_file) | |
os.remove(essential_name+'.heic') | |
# Read back | |
result = np2tensor(decimg) | |
return result | |