Spaces:
Running
on
T4
Running
on
T4
import sys, os, random | |
import cv2, torch | |
from multiprocessing import Process, Queue | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
# Import files from the local folder | |
from opt import opt | |
from degradation.ESR.utils import tensor2np, np2tensor | |
class JPEG(): | |
def __init__(self) -> None: | |
# Choose an image compression degradation | |
# self.jpeger = DiffJPEG(differentiable=False).cuda() | |
pass | |
def compress_and_store(self, np_frames, store_path, idx): | |
''' Compress and Store the whole batch as JPEG | |
Args: | |
np_frames (numpy): The numpy format of the data (Shape:?) | |
store_path (str): The store path | |
Return: | |
None | |
''' | |
# Preparation | |
single_frame = np_frames | |
# Compress as JPEG | |
jpeg_quality = random.randint(*opt['jpeg_quality_range2']) | |
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality] | |
_, encimg = cv2.imencode('.jpg', single_frame, encode_param) | |
decimg = cv2.imdecode(encimg, 1) | |
# Store the image with quality | |
cv2.imwrite(store_path, decimg) | |
def compress_tensor(tensor_frames): | |
''' Compress tensor input to JPEG and then return it | |
Args: | |
tensor_frame (tensor): Tensor inputs | |
Returns: | |
result (tensor): Tensor outputs (same shape as input) | |
''' | |
single_frame = tensor2np(tensor_frames) | |
# Compress as JPEG | |
jpeg_quality = random.randint(*opt['jpeg_quality_range1']) | |
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality] | |
_, encimg = cv2.imencode('.jpg', single_frame, encode_param) | |
decimg = cv2.imdecode(encimg, 1) | |
# Store the image with quality | |
# cv2.imwrite(store_name, decimg) | |
result = np2tensor(decimg) | |
return result | |