Spaces:
Running
on
T4
Running
on
T4
''' | |
This is file is to execute the inference for a single image or a folder input | |
''' | |
import argparse | |
import os, sys, cv2, shutil, warnings | |
import torch | |
import gradio as gr | |
from torchvision.transforms import ToTensor | |
from torchvision.utils import save_image | |
warnings.simplefilter("default") | |
os.environ["PYTHONWARNINGS"] = "default" | |
# Import files from the local folder | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
from test_code.test_utils import load_grl, load_rrdb, load_cunet | |
# You must add these time, else it will have Out of Memory | |
def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torch.float32, downsample_threshold=720, crop_for_4x=True): | |
''' Super Resolve a low resolution image | |
Args: | |
generator (torch): the generator class that is already loaded | |
input_path (str): the path to the input lr images | |
output_path (str): the directory to store the generated images | |
weight_dtype (bool): the weight type (float32/float16) | |
downsample_threshold (int): the threshold of height/width (short side) to downsample the input | |
crop_for_4x (bool): whether we crop the lr images to match 4x scale (needed for some situation) | |
''' | |
print("Processing image {}".format(input_path)) | |
# Read the image and do preprocess | |
img_lr = cv2.imread(input_path) | |
h, w, c = img_lr.shape | |
# Downsample if needed | |
short_side = min(h, w) | |
if downsample_threshold != -1 and short_side > downsample_threshold: | |
resize_ratio = short_side / downsample_threshold | |
img_lr = cv2.resize(img_lr, (int(w/resize_ratio), int(h/resize_ratio)), interpolation = cv2.INTER_LINEAR) | |
# Crop if needed | |
if crop_for_4x: | |
h, w, _ = img_lr.shape | |
if h % 4 != 0: | |
img_lr = img_lr[:4*(h//4),:,:] | |
if w % 4 != 0: | |
img_lr = img_lr[:,:4*(w//4),:] | |
# Check if the size is out of the boundary | |
h, w, c = img_lr.shape | |
if h*w > 720*1280: | |
raise gr.Error("The input image size is too large. The largest area we support is 720x1280=921600 pixel!") | |
# Transform to tensor | |
img_lr = cv2.cvtColor(img_lr, cv2.COLOR_BGR2RGB) | |
img_lr = ToTensor()(img_lr).unsqueeze(0).cuda() # Use tensor format | |
img_lr = img_lr.to(dtype=weight_dtype) | |
# Model inference | |
print("lr shape is ", img_lr.shape) | |
super_resolved_img = generator(img_lr) | |
# Store the generated result | |
with torch.cuda.amp.autocast(): | |
if output_path is not None: | |
save_image(super_resolved_img, output_path) | |
# Empty the cache every time you finish processing one image | |
torch.cuda.empty_cache() | |
return super_resolved_img | |
if __name__ == "__main__": | |
# Fundamental setting | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_dir', type = str, default = '__assets__/lr_inputs', help="Can be either single image input or a folder input") | |
parser.add_argument('--model', type = str, default = 'GRL', help=" 'GRL' || 'RRDB' (for ESRNET & ESRGAN) || 'CUNET' (for Real-ESRGAN) ") | |
parser.add_argument('--scale', type = int, default = 4, help="Up scaler factor") | |
parser.add_argument('--weight_path', type = str, default = 'pretrained/4x_APISR_GRL_GAN_generator.pth', help="Weight path directory, usually under saved_models folder") | |
parser.add_argument('--store_dir', type = str, default = 'sample_outputs', help="The folder to store the super-resolved images") | |
parser.add_argument('--float16_inference', type = bool, default = False, help="Float16 inference, only useful in RRDB now") # Currently, this is only supported in RRDB, there is some bug with GRL model | |
args = parser.parse_args() | |
# Sample Command | |
# 4x GRL (Default): python test_code/inference.py --model GRL --scale 4 --weight_path pretrained/4x_APISR_GRL_GAN_generator.pth | |
# 2x RRDB: python test_code/inference.py --model RRDB --scale 2 --weight_path pretrained/2x_APISR_RRDB_GAN_generator.pth | |
# Read argument and prepare the folder needed | |
input_dir = args.input_dir | |
model = args.model | |
weight_path = args.weight_path | |
store_dir = args.store_dir | |
scale = args.scale | |
float16_inference = args.float16_inference | |
# Check the path of the weight | |
if not os.path.exists(weight_path): | |
print("we cannot locate weight path ", weight_path) | |
# TODO: I am not sure if I should automatically download weight from github release based on the upscale factor and model name. | |
os._exit(0) | |
# Prepare the store folder | |
if os.path.exists(store_dir): | |
shutil.rmtree(store_dir) | |
os.makedirs(store_dir) | |
# Define the weight type | |
if float16_inference: | |
torch.backends.cudnn.benchmark = True | |
weight_dtype = torch.float16 | |
else: | |
weight_dtype = torch.float32 | |
# Load the model | |
if model == "GRL": | |
generator = load_grl(weight_path, scale=scale) # GRL for Real-World SR only support 4x upscaling | |
elif model == "RRDB": | |
generator = load_rrdb(weight_path, scale=scale) # Can be any size | |
generator = generator.to(dtype=weight_dtype) | |
# Take the input path and do inference | |
if os.path.isdir(store_dir): # If the input is a directory, we will iterate it | |
for filename in sorted(os.listdir(input_dir)): | |
input_path = os.path.join(input_dir, filename) | |
output_path = os.path.join(store_dir, filename) | |
# In default, we will automatically use crop to match 4x size | |
super_resolve_img(generator, input_path, output_path, weight_dtype, crop_for_4x=True) | |
else: # If the input is a single image, we will process it directly and write on the same folder | |
filename = os.path.split(input_dir)[-1].split('.')[0] | |
output_path = os.path.join(store_dir, filename+"_"+str(scale)+"x.png") | |
# In default, we will automatically use crop to match 4x size | |
super_resolve_img(generator, input_dir, output_path, weight_dtype, crop_for_4x=True) | |