Spaces:
Runtime error
Runtime error
import math | |
from einops import rearrange | |
from vector_quantize_pytorch import GroupedResidualFSQ | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class ConvNeXtBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
kernel, dilation, | |
layer_scale_init_value: float = 1e-6, | |
): | |
# ConvNeXt Block copied from Vocos. | |
super().__init__() | |
self.dwconv = nn.Conv1d(dim, dim, | |
kernel_size=kernel, padding=dilation*(kernel//2), | |
dilation=dilation, groups=dim | |
) # depthwise conv | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
x = residual + x | |
return x | |
class GFSQ(nn.Module): | |
def __init__(self, | |
dim, levels, G, R, eps=1e-5, transpose = True | |
): | |
super(GFSQ, self).__init__() | |
self.quantizer = GroupedResidualFSQ( | |
dim=dim, | |
levels=levels, | |
num_quantizers=R, | |
groups=G, | |
) | |
self.n_ind = math.prod(levels) | |
self.eps = eps | |
self.transpose = transpose | |
self.G = G | |
self.R = R | |
def _embed(self, x): | |
if self.transpose: | |
x = x.transpose(1,2) | |
x = rearrange( | |
x, "b t (g r) -> g b t r", g = self.G, r = self.R, | |
) | |
feat = self.quantizer.get_output_from_indices(x) | |
return feat.transpose(1,2) if self.transpose else feat | |
def forward(self, x,): | |
if self.transpose: | |
x = x.transpose(1,2) | |
feat, ind = self.quantizer(x) | |
ind = rearrange( | |
ind, "g b t r ->b t (g r)", | |
) | |
embed_onehot = F.one_hot(ind.long(), self.n_ind).to(x.dtype) | |
e_mean = torch.mean(embed_onehot, dim=[0,1]) | |
e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1) | |
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1)) | |
return ( | |
torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device), | |
feat.transpose(1,2) if self.transpose else feat, | |
perplexity, | |
None, | |
ind.transpose(1,2) if self.transpose else ind, | |
) | |
class DVAEDecoder(nn.Module): | |
def __init__(self, idim, odim, | |
n_layer = 12, bn_dim = 64, hidden = 256, | |
kernel = 7, dilation = 2, up = False | |
): | |
super().__init__() | |
self.up = up | |
self.conv_in = nn.Sequential( | |
nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), | |
nn.Conv1d(bn_dim, hidden, 3, 1, 1) | |
) | |
self.decoder_block = nn.ModuleList([ | |
ConvNeXtBlock(hidden, hidden* 4, kernel, dilation,) | |
for _ in range(n_layer)]) | |
self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) | |
def forward(self, input, conditioning=None): | |
# B, T, C | |
x = input.transpose(1, 2) | |
x = self.conv_in(x) | |
for f in self.decoder_block: | |
x = f(x, conditioning) | |
x = self.conv_out(x) | |
return x.transpose(1, 2) | |
class DVAE(nn.Module): | |
def __init__( | |
self, decoder_config, vq_config, dim=512 | |
): | |
super().__init__() | |
self.register_buffer('coef', torch.randn(1, 100, 1)) | |
self.decoder = DVAEDecoder(**decoder_config) | |
self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False) | |
if vq_config is not None: | |
self.vq_layer = GFSQ(**vq_config) | |
else: | |
self.vq_layer = None | |
def forward(self, inp): | |
if self.vq_layer is not None: | |
vq_feats = self.vq_layer._embed(inp) | |
else: | |
vq_feats = inp.detach().clone() | |
temp = torch.chunk(vq_feats, 2, dim=1) # flatten trick :) | |
temp = torch.stack(temp, -1) | |
vq_feats = temp.reshape(*temp.shape[:2], -1) | |
vq_feats = vq_feats.transpose(1, 2) | |
dec_out = self.decoder(input=vq_feats) | |
dec_out = self.out_conv(dec_out.transpose(1, 2)) | |
mel = dec_out * self.coef | |
return mel | |