import torch import torch.nn.functional as F from transformers.generation import TopKLogitsWarper, TopPLogitsWarper from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat def infer_code( models, text, spk_emb = None, top_P = 0.7, top_K = 20, temperature = 0.3, repetition_penalty = 1.05, max_new_token = 2048, **kwargs ): device = next(models['gpt'].parameters()).device if not isinstance(text, list): text = [text] if not isinstance(temperature, list): temperature = [temperature] * models['gpt'].num_vq if spk_emb is not None: text = [f'[Stts][spk_emb]{i}[uv_break][Ptts]' for i in text] else: text = [f'[Stts][empty_spk]{i}[uv_break][Ptts]' for i in text] text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq) text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) inputs = { 'input_ids': input_ids, 'text_mask': text_mask, 'attention_mask': text_token['attention_mask'], } emb = models['gpt'].get_emb(**inputs) if spk_emb is not None: emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \ F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12) num_code = models['gpt'].emb_code[0].num_embeddings - 1 LogitsWarpers = [] if top_P is not None: LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) if top_K is not None: LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) LogitsProcessors = [] if repetition_penalty is not None and repetition_penalty != 1: LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\ repetition_penalty, num_code, 16)) result = models['gpt'].generate( emb, inputs['input_ids'], temperature = torch.tensor(temperature, device=device), attention_mask = inputs['attention_mask'], LogitsWarpers = LogitsWarpers, LogitsProcessors = LogitsProcessors, eos_token = num_code, max_new_token = max_new_token, infer_text = False, **kwargs ) return result def refine_text( models, text, top_P = 0.7, top_K = 20, temperature = 0.7, repetition_penalty = 1.0, max_new_token = 384, prompt = '', **kwargs ): device = next(models['gpt'].parameters()).device if not isinstance(text, list): text = [text] assert len(text), 'text should not be empty' text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text] text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) inputs = { 'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq), 'text_mask': text_mask, 'attention_mask': text_token['attention_mask'], } LogitsWarpers = [] if top_P is not None: LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) if top_K is not None: LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) LogitsProcessors = [] if repetition_penalty is not None and repetition_penalty != 1: LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16)) result = models['gpt'].generate( models['gpt'].get_emb(**inputs), inputs['input_ids'], temperature = torch.tensor([temperature,], device=device), attention_mask = inputs['attention_mask'], LogitsWarpers = LogitsWarpers, LogitsProcessors = LogitsProcessors, eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None], max_new_token = max_new_token, infer_text = True, **kwargs ) return result